
white paper

Tagging Niagara Components
using Standard Dictionaries
and Ontologies
by Eric Anderson, Software Engineer, Tridium with
 Introduction by Therese Sullivan, Marketing Director, Tridium

S tandardized tagging is a topic of great

interest to any Niagara user that wants to

save time, achieve better outcomes, and future-

proof your work for data analytics, machine-

learning (ML), and AI. On Tridium’s part, we are

building more support into Niagara Framework®

to make it easier and more

intuitive for Niagara users to

begin systematically tagging

all their station components

See Figure 1 for a timeline of

tagging-related features added

to Niagara 4.

Niagara Framework users are

a community of experts in the

field of designing customized

user interfaces for end-

users of smart systems and smart buildings.

Tagging is a core skill for accommodating the

efficient resolving and rendering of graphical

components in a customized UI, as well as for

preparing a Niagara station for data analytics

and ultimately ML and AI approaches. There

This whitepaper is about how Niagara users
can configure tag dictionaries for easy

reuse and faster overall deployment of a
tagged project. It will cover how to imply

tags and to deploy tags at-scale across
projects. With the right tips and tactics,

you can make light-work of the job of
tagging your Niagara station components.

Figure 1. Introduced in Niagara4.0, Niagara entity query language (NEQL) made it possible to search
for tags within Niagara stations . With every subsequent release, the Niagara development team has
made tagging easier to comprehend, deploy and use.

2

is an industry-wide move toward standardized

point tagging pioneered by open-source

semantic-web organizations. These efforts

began with Project Haystack, and now they

include Brick Schema, Google Digital Buildings

Project, and Buildings IOT Ontology Alignment

Project. ASHRAE is also working on a standard

ontology and approach naming. Architects,

who are starting to think about controls

strategies from the first design phases of new

construction, are pushing for standardized tags

that easily interoperate with BIM. Likewise, there

are semantic web initiatives tied to International

Energy Efficiency programs like Energy Star. All

this activity is making property owners ask their

systems integrators the question “How are you

tagging our projects?” Today, the answer needs

to be “We are using a standardized tagging

methodology with the standard dictionaries

you want.” Due to the tagging features built

into the latest versions of Niagara Framework,

Niagara users have the support they need to do

just that. They can configure tag dictionaries for

easy reuse and faster overall deployment of a

tagged project.

This whitepaper will cover how to imply tags

and to deploy tags at-scale across projects.

There is special attention paid here to working

with the Haystack dictionary and the NHaystack

module — as it is a fact that Project Haystack

was the first to start working on the semantic

tagging challenge and Tridium has been part

of the open-source working group supporting

NHaystack. However, the tips and tactics

described here have wider applicability. The

authors’ goals - and the goals of Niagara

Framework’s developers - are to help you make

light-work of the job of tagging your Niagara

station components — whatever the ontological

approach and dictionaries brought to bear.

NHAYSTACK OVERVIEW
NHaystack is an open-source Niagara

module that provides support for Project

Haystack’s RESTful protocol in Niagara

stations. The module was first available

prior to the 2015 launch of Niagara 4,

allowing points to be tagged even before

tagging was supported natively in Niagara.

The module also assisted with relating

those points to site and equip components.

Niagara stations can act as Haystack

servers by installing a NHaystackService.

In addition to or instead of being a server,

stations can connect to other Haystack

servers by installing an NHaystackNetwork.

The latest version of the N4 NHaystack

module supports Niagara Framework’s

native tags and relations. The NHaystack

GUI tool will reflect Niagara tags

and relations on the component

(for namespaces included in the

NHaystackService’s Prioritized Namespaces

property) and changes made in the GUI tool

will update the component’s Niagara tags

and relations (using the “hs” namespace).

The N4 version of the NHaystack module

is available on StackHub: https://stackhub.

org/package/nHaystack.

In the interest of cyber defense, Niagara

now requires third-party modules to be

signed by default. More specifically, Niagara

Version 4.9 upped the module verification

mode to “medium”, which requires modules

to be signed by a valid, trusted certificate.

The latest version of the NHaystack module

(3.1.0.4.9) has been signed by Richard

McElhinney using a certificate issued by one

of the CAs in the system trust store. The

module will be ready to use once dropped

into the Niagara modules folder.

Custom ops available in the NHaystack

module include Working-with-Niagara-
Alarms and Working-with-Niagara-
Schedules. The former returns alarms

associated with a specified point, while the

latter returns events in a specified weekly

schedule.

The NHaystack project is always looking

for contributions and feedback from the

community. So please contact our working

group if you have input. p

3

DIRECT VS IMPLIED TAGS

All Tag Dictionaries in Niagara contain tag,

tag group, and relation definitions. The tag

and tag group definitions feed Niagara’s

HTML5 Tag Manager and Workbench Edit

Tags dialog for applying direct tags and tag

groups to components. Direct tag groups are an

n:tagGroup relation from a component to a tag

group definition. Figure 2 illustrates the result

of adding a direct airflow standby set-point tag

group to a component. Niagara’s Haystack Tag

Dictionary includes tag group definitions for

each equip point grouping defined by Haystack.

Smart Tag Dictionaries can also include

tag rules for implying tags, tag groups, and

relations. Every direct tag, tag group, or relation

uses a component slot, so using implied tags

will save memory. Having tag rules centralized

in the Smart Tag Dictionaries can make your

tagging effort easier to maintain and update.

Once you have a working set of tag rules, you

can drop them into other stations, and tags will

start to be implied immediately.

The trade-off with tag rules is that they do need

to be computed at run time. To minimize this

effort, Niagara 4 only evaluates the tag rules

necessary for the tags being searched—not all

tag rules in all dictionaries. However, you should

understand this trade-off. Direct tags are faster

for searching, but implied tags via tag rules are

the way to go from the standpoint of storage

efficiency and long-term maintenance.

TAG RULE CONDITIONS

Tag rules are made up of tag rule conditions;

here are some simple ones:

• ‘And’ condition is true if all child conditions

are true. It is short-circuiting and will stop

evaluating subsequent conditions, once the first

condition returns false.

• ‘Or’ condition is true if any child conditions

are true. It is short-circuiting and will stop

evaluating once the first condition returns true.

• ‘Always’ condition is useful when you want to

imply items to every component in the station,

regardless of that component’s type or any

other tags on that component.

Figure 2: Highlighted in red
in this HTML5 Tag Manager
view are the tag group’s
tags. These are implied on
the component that has a
tag group relation to this
tag group. Highlighted in
green is an implied tag
group id marker tag. Such
marker tags are useful when
searching a station for
components on which this
tag group is applied, instead
of all components that
contain the tag group’s tags.
A word of caution: if you
delete a tag group definition
or its dictionary, the relation
will also be deleted.

4

• ‘IsType’ condition checks to see that the

component is the specified type or one of its

subclasses, before applying the tag.

The Niagara4 tag dictionary palette

offers another class of conditions around

‘BooleanFilter.’ The basic ‘BooleanFilter’ applies

an NEQL query to each component. If the query

applies to the component, then that condition

returns true. The ‘BooleanFilter’ has two

subclasses:

• ‘HasAncestor’ evaluates the NEQL query on

the component itself, and then on its ancestors.

As soon as it finds one ancestor that satisfies

the query, then that condition returns true.

• ‘HasRelation’ evaluates the query on the

component itself and then on any component it

can reach using a specified relation id.

‘IsType’ conditions can be evaluated quickly,

thus it is best to put those conditions near

the top of a tag rule. ‘IsType’ will match the

specified condition and subclasses. If you

need an exact type match, you can use a

‘BooleanFilter’ to apply an NEQL query that

uses ‘n:type’ tags. For example, the query might

be written: “n:type = ‘control:numericPoint’”, if
you want just numeric points and not numeric

writables. Use the ‘like’ operator to compare

a string value to a regex expression. You can

make that regex case-insensitive by including

‘(?i)’ at the beginning. For example, you could

form a query like “n:name like ‘(?i)roomCO2’”.
Figure 3 illustrates a Tag Rule example that uses

a mix of these condition types in combination.

Figure 3. This tag rule has at the top an ‘And’ condition with two child conditions
underneath it. The first is the ‘IsType’ so it’s looking for numeric writables. If it finds
a numeric writable then it will evaluate the ‘Or’ condition. The ‘Or’ has two Boolean
Filters that search for and compare ‘n:name’ tags. If either of those filters apply to a
component, then the implied tags in that tag list − air, sensor, CO2 − will be implied
on the component.

5

SIMPLE VS SMART IMPLIED TAGS
There are two flavors of implied tags, and

Niagara users doing tagging can benefit from

both. Simple implied tags have an implied value

that is fixed. Examples include marker tags and

value tags where the value is specified. Consider

the Haystack tag ‘hs:phase’: if this tag is in a

rule and it is set to ‘BC,’ then when that tag is

implied, it will always have the string value ‘BC.’

Likewise, ‘hs:stage’ = 1.00 will always have the

value of one.

The other flavor of implied tags are smart

implied tags. The following tags derive their

value from the component they’re implied on:

• ‘n:name’: the value of the tag is derived from

the name of the component.

• ‘n:type’: the value of the tag is derived from

the type spec of the component

• ‘hs:kind’: from the Haystack Tag Dictionary,

the value of this tag is derived from the type of

point that it is implied on.

• ‘hs:tz’: from the Haystack Tag Dictionary, the

value is derived from the time zone of the station

The following tags may or may not be implied

based on the component:

• ‘n:input’: tag will be implied only on non-

writable points

• ‘n:output’: tag will be implied only on writable

points.

• ‘n:hasPxView’: tag will only be implied if the

component has a PX view associated with it

The following tags may or may not be implied

based on the component and their value is

derived from the component:

• ‘n:history’: tag will be implied if a component

has an enabled history extension. The value

of the tag will be the history ID defined in the

extension.

• ‘hs:enum’: from the haystack dictionary, the

value of this tag will be implied on Boolean

and Enum points. For Boolean points, the

value of the tag will be “false, true” or will use

the “falseText” and/or “trueText” facet values

should those be present. For Enum points, the

tag value will be set using the range facet value,

if that is present.

NIAGARA HAYSTACK TAG DICTIONARY
Tridium’s Niagara Haystack Tag Dictionary

provides general support for Haystack

tags and relations in a Niagara station. It is

contained within the haystack-rt module and

includes all of the tags defined in Project

Haystack version 3.0.2. A tag group is defined

for each set of equip points. For example,

the “dischargeAirTempSensor” tag group can

be set on the appropriate VAV point and the

“discharge”, “air”, “temp”, and “sensor” tags

will be implied on that component. A relation

is defined for each ref tag.

In practice, to place an “ahuRef” tag on a

component representing a VAV, for example,

in Niagara, you would create a relation

from that component to the component

that represents the AHU with which it is

associated. When relations like this are

exported by the NHaystack module, they are

converted to ref tags with their value set to

the “id” tag value of the relation endpoint.

Finally, there are tag rules defined to imply

tags and relations in common situations.

Here are some examples of implied marker

tags in the Haystack Tag Dictionary:

• “connection” on components of type

“driver:DeviceNetwork”

• “cur” and “point” on components of type

“control:ControlPoint”
• “writable” on components of type

“control:IWritablePoint”
• “device” on components of type

“driver:Device”

• “hvac” on components that have certain

direct or implied tags, such as “ahu”, “vav”,

“chiller”, etc.

Something to watch out for when working

with implied values is stale curVal tags.

Implying a “curVal” tag does not cause a point

subscription, so the tag’s value can become

out-of-date. To query the station for more

up-to-date values, a point must be placed in

subscription by, for example, adding a point

extension. In the Niagara System Database, the

tag’s value will be the one captured at System

Index time. System Indexing usually occurs

once a day (indexing more frequently to keep

cur values updated is not recommended.)

Instead of querying for cur values, a WatchSub
Op can be used. p

6

• ‘hs:maxVal’ and ‘hs:minVal’ functions are

similar to hs:enum in that they will resolve to

the component’s maximum and minimum facet

values

• ‘hs:unit’ is based on the unit facet set for the

component.

SCOPED TAGS

The ‘scoped’ tag is another type of smart

implied tag. The simplest use case for a ‘scoped’

tag is to imply a tag based on whether a given

component has an ancestor with a tag that has

the same ID as the scoped tag. The value of that

implied tag will match the ancestor tag’s value.

Figure 4 shows a tag rule built using a scoped tag.

The Niagara 4 tag dictionary palette has some

advanced options for scoped tags as well: You

can search for a different tag ID rather than

matching the ID of the ‘scoped’ tag. You can

copy the value of a tag other than the one being

searched for. Finally, you can specify an ‘out-
of-scope’ tag ID. If a tag with that ID is found

before finding the tag being searched for, then

the scoped tag will not be implied (Figure 5).

SCOPED TAGS FOR SYSTEM INDEXING
One use case for scoped tags in a Niagara

station is to support system indexing. Under

the tag dictionary palette, there is a system

index dictionary that you can drag into your tag

dictionary service. It contains two marker tags:

‘excluded’ and ‘included’. The tag dictionary

also includes a tag rule that implies an

‘excluded’ tag. By default, components with the

‘systemIndex:excluded’ tag are not indexed.

IMPLIED RELATIONS
In addition to smart implied tags, the Niagara

dictionary palette also offers smart implied

relations. The ‘n:child’ and ‘n:parent’ smart

relations help to navigate a component tree.

If you’re on a driver network, for example, you

can use the ‘n:childDevice’ relation to get all the

child devices under that network. If you are at

one of those devices, you can navigate to the

network by traversing the ‘n:parentNetwork’

relation. On a device, you can use the

‘n:childPoint’ and ‘n:childNullProxyPoint’
relations to get from the device to all the child

points. The ’n:parentDevice’ relation can get

you back from a child point to the parent device

it belongs to.

Figure 4. In this Scoped Tag
Rule Example, the ID of the
Scoped Tag is ‘scoped.’ It is in
a dictionary with the namespace
‘my.’ The effect of applying the
‘my:scoped’ tag to a component
named ‘Ancestor’ is to place
the ‘my:scoped’ tag on all of its
descendants. The implied tags
are marker tags because the
‘my:scoped’ tag applied to this
ancestor component is also a
marker tag.

7

Figure 5. In this advanced
Scoped Tag Rule example,
instead of searching for a tag
with the ID ‘my:scoped’, the rule
searches for a tag with the ID
‘my:other.’ An out-of-scoped ID
is specified: ‘my:outOfScope’..
Instead of copying the value
of the tag being searched
for, the value of an ‘n:name’
tag will be copied. When a
’my:other’ tag is applied to the
ancestor component, Folder 2
and its descendants have the
‘my:scoped’ tag implied on
them; the value of those implied
tags is copied from the value of
the ‘n:name’ tag, which in this
case is the string ‘Ancestor’.
Because Folder 1 has the
’my:outOfScope’ tag on it, the
‘my:scoped’ tag is not implied
on it or any of its descendants.

Figure 5. When preparing
for a system index, you
can apply the ‘excluded’
marker tag to the top
of that part of the tree
you want to exclude,
and the ‘excluded’ tag
will be implied on all
descendants. The system
index will ignore those
components. If you want
to run a system index
that includes a subtree
of the tree that you are
excluding, you can put
the ‘included’ marker tag
on the top of that section.

8

© 2021 Tridium Inc. All rights reserved. All other trademarks and registered trademarks are properties of their respective owners.

Information and/or specifications published here are current as of the date of publication of this document. Tridium, Inc. reserves the right to
change or modify specifications without prior notice. The latest product specifications can be found by contacting our corporate headquarters,
Richmond, Virginia. Products or features contained herein may be covered by one or more U.S. or foreign patents. This document may be copied
only as expressly authorized by Tridium in writing. It may not otherwise, in whole or in part, be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form.

2021 - 0020

About the Author:
Eric Anderson, a Software Engineer, has been working on tagging and tag hierarchies since he
joined Tridium in 2015. Tridium created and continues to enhance the Niagara Framework®, an
open platform that facilitates system integration and control.

tridium.com

Americas: support@tridium.com
EMEA: ordersEMEA@tridium.com
Asia-Pacific: tsupportAP@tridium.com

Niagara 4’s Haystack Dictionary offers

‘hs:equipRef’ and ‘hs:siteRef’ relations. These

smart relations will be implied between any non-

null proxy points and an ancestor that has the

‘hs:equipRef’ tag on it. If that equip component

also has an ‘hs:siteRef’ relation to a component

with the ‘hs:site’ tag, the ‘hs:siteRef’ relation will

be implied from those non-null proxy points to

that equip’s site. These smart implied relations

are time savers when building a station by

avoiding the tedious addition of many direct

relations.

TAG-BASED PX GRAPHICS & SYSTEMDB

Niagara tag-based PX graphics use all the tag

and relation information that one can build

into a station as described above. Introduced

in Niagara 4.9, tag-based PX graphics use

bindings based on NEQL queries. Bound

components must have the expected tags and

relations; however, they don’t need to have the

same names, nor do they need to be located at

the same place in the component tree. Niagara

will find them just based on tags and relations.

NEQL traverse queries can be used to create

bindings to anywhere in the station using

relations. The great advantage of tag-based PX

graphics is that they are easier to reuse across

stations.

Another feature in Niagara that uses tag and

relation information is System Database.

Niagara System Database (systemDB) is our

name for the stored result of System Indexing

– the periodic update of the tag and relation

information for selected entities from each

station in your Niagara network. By default,

Niagara indexes all networks, devices, points,

schedules, point/device folders. A System

Index will also pull up any components with a

PX view using the new ’n:hasPxView’ implied

tag. SystemDB is currently single-tier, and it

enhances any features that use NEQL queries.

You can search all the stations in your Niagara

network and build hierarchies against the

results, given that they have been indexed

up to systemDB. As of 4.10, if your Niagara

Supervisor has a systemDB and you’ve indexed

your stations to it, you can leverage virtual

tag-based PX graphics against that system

database.

SUMMARY

Since the Niagara Framework is tag-agnostic,

users have the utmost flexibility when applying

tags to Niagara stations and building systems.

The result is visualizations that are reusable and

manufacturer- and equipment-agnostic. Tag-

based bindings streamline on-site efficiency,

save time and provide more flexibility when

deploying graphic templates on new and

existing Niagara stations. p

