

Jason Woollard / Nick Dodd
April 4th 2022

The HTTP Client
(Developers Edition)

Niagara HTTP Client

Allows the Niagara station
to interact with HTTP web
services and API’s.

Data can be exchanged
both in and out of Niagara.

As many use cases as API’s
• Bringing useful data into a building

• Occupancy, Travel, Air Quality, Car Parks

• Exporting station data out to an external service / cloud

• AWS IoT, Azure IoT, Google Cloud offer RESTful services

• Messaging, Notifications

• Device Control

• Integrate with IoT Devices / Gateways

Rewind…..Niagara Forum 2019

JSON Toolkit lighting control demo

Actually - repeated by us tomorrow @ 4.30

PM

Next 2 years – where is the HTTP component?

https://http.cat/404

“Interested in 'Dynamic HTTP'
component seen in JSON toolkit
presentation….?”

“I recently saw a hint in one of your
JSON Toolkit presentations and
couldn’t find the module which
contains…..”

“Is it possible to receive or send
HTTP requests from our Niagara
equipment”

“Could you advise whether there is a
Rest API module”

HTTP Client
in a nutshell

Essential

Standalone Client

HTTP Client Driver
• HTTP Client Proxy Points per resource

• Share auth and transport
• Useful for polling multiple similar endpoints

• Device Ping Address for
service status (optional)

• Points Folder defines common
Headers or Parameters

WebSocket Client
Persistent Connection

Full duplex comms with queues

Wiresheet Tools

Capture response headers/cookies

Trigger actions / other
clients to send

Other timesavers
• Use Files or Niagara Reports as payload

• Utility to duplicate clients with different settings

String Servlet
Send messages into the station

• trigger some logic
• inject into a px view
• append to a history

Setup conditional response based
on headers / content

But hang on….why are you telling me
all this?

“I am at a developer
day, I can do all this
myself with a simple
Java class?”

https://http.cat/417

‘I want to save some time’
• Public API

• Create working clients in a few lines of code
• Forward compatibility

• Wiresheet Ready
• Drag from the palette and go …..

• Ready to use driver
• Attracts usual driver benefits …..
• Poll Scheduler
• Point Extensions
• Consistent UI

‘I guess I need to do the Security thing’
• Certificate Management

• Approval of SSL certificates in familiar tool

• Security Dashboard
• Already integrated with warnings for various settings

• Security Logging
• Dedicated audit log for all outgoing requests

‘Sometimes you need more than 1 class….’

• Authentication
• Basic / Digest / Niagara / Token / Response

Cookie
• Extensible / pluggable authenticator model *

• Avoid bottlenecks
• Randomization of send on startup
• Don’t DDOS your endpoint!

* not public API yet

‘Sometimes you need more than 1 class….’

• Request Throttling
• Per Client + Global
• Ensure you do not exceed API limits, avoiding

unexpected bills.

• Concurrency challenges
• Managed Thread pool

• Trigger and Response Chain
• Trigger events or secondary requests.

Time to build something

Public API

1. Building a simple client
‘I want to bring the lights on at sunset’

IHttpClient client = HttpClientBuilder.instance()
.withAddress("https://api.sunrise-sunset.org/json")
.withParameter("lat", BDouble.make(50.822))
.withParameter("lng", BDouble.make(0.137))
.mountAtOrd("slot:/api", “BrightonSunData")
.build();

client.send();

Simple JSON Toolkit integration
{

“results": {
“sunrise": "6:20:11 AM",
“sunset": “6:20:11 PM",
“solar_noon": …

}
},

2. Adding authentication

https://http.cat/401 https://http.cat/403

Adding authentication
‘My strategy needs to know the tree pollen index’

IHttpClient client = HttpClientBuilder.instance()
.withAddress("https://api.ambeedata.com/latest/pollen/by-lat-lng")
.withParameter("lat", BDouble.make(35.222))
.withParameter("lng", BDouble.make(-80.847))
.withHeaderTokenAuthenticator("x-api-key", "895e63e57a1……")
.mountAtOrd("slot:/api", "CharlottePollenData")
.build();

Reading the response – Synchronous Send

String responseBody = client.sendSync();

System.out.println("Received: " + client.getLastResponseCode() +
" : " + responseBody);

Received: 200 :

{"message":"success","lat":35.22,"
lng":80.85,"data":[{"Count":{"gra
ss_pollen":0,"tree_pollen":157…

{ “message": “success“,
“lat": 35.22,
“lng": 80.85,
“data": [

{ “Count":
{
“grass_pollen": 0,
“tree_pollen": 157,
…

Reading the response – Asynchronous Send
Future<IHttpResponse> future = client.sendAsync();
IHttpResponse response = future.get(2, TimeUnit.SECONDS);

System.out.println(response.getResponseCode());
System.out.println(response.getBody());
System.out.println(response.getHeader("content-length"));

IHttpResponse responseObject = client.getLastResponse();

Received: 200 :
{"message":"success","lat":35.22,"lng":-
80.85,"data":[{"Count":{"grass_pollen":0,"tree_pollen":218….. Optional[437]

Polling for Pollen

(Tree pollen is Nick’s kryptonite)

3. Adding POST Payload

https://http.cat/413

Adding POST Payload
IHttpClient client = HttpClientBuilder.instance()

.withAddress("https://api.twilio.com/2010-04-01/Accounts/AC57e...../Messages.json")

.withMethod("POST")

.withFormPayload() // or withStringPayload(“….”)

.withParameter("Body", BString.make(“Hello Charlotte"))

.withParameter(“From", BString.make(“+1862420……."))

.withParameter(“To", BString.make(“+44792157……."))

.withBasicAuthenticator("AC57e96db…...", "cc19b1f……")

.mountAtOrd("slot:/api", "TwilioSMS")

.build();

client.send();

To=%2B44792157…..&From=%2B1862420…..&Body=Hello+Charlotte

Sending the SMS
POST payload / Content-Type
automatically generated from

parameters

A slide with an agenda

2.6122463

302 Redirect, to more information

• Applications Track Wednesday!
• 10.45 AM with Curtis McKerlie

• https://docs.niagara-community.com/bundle/HttpClientDriver

• Bajadoc for javax.baja.httpClient.HttpClientBuilder

Questions?

https://http.cat/429

Monday, April 4 – Wednesday, April 6
Charlotte Convention Center & Westin

www.tridium.com/niagarasummit

Niagara Summit 2022

	Slide Number 1
	The HTTP Client (Developers Edition)
	Niagara HTTP Client
	As many use cases as API’s
	Rewind…..Niagara Forum 2019
	Next 2 years – where is the HTTP component?
	 HTTP Client� in a nutshell
	Standalone Client
	HTTP Client Driver
	WebSocket Client
	Wiresheet Tools
	Other timesavers
	String Servlet
	But hang on….why are you telling me all this?
	‘I want to save some time’
	‘I guess I need to do the Security thing’
	‘Sometimes you need more than 1 class….’
	‘Sometimes you need more than 1 class….’
	Public API
	1. Building a simple client
	Simple JSON Toolkit integration
	2. Adding authentication
	Adding authentication
	Reading the response – Synchronous Send
	Reading the response – Asynchronous Send
	Polling for Pollen
	3. Adding POST Payload
	Adding POST Payload
	Sending the SMS
	A slide with an agenda
	302 Redirect, to more information
	Questions?
	Slide Number 35

