


Automated Testing
Eric Anderson / Tridium

Presenter Notes
Presentation Notes
Good afternoon.  My name is Eric Anderson.  I'm a software developer on the Niagara core team and have been with Tridium since 2015.  I started on tagging, Haystack, and hierarchies.  Lately, I've been spending most my time on Tridium's BACnet driver.



Outline

• Why write tests?
• Testing Niagara classes
• Testing in a station
• Test helpers

Presenter Notes
Presentation Notes
Today, I'm going to talk about automated testing in Niagara.
First, I'll share my motivation for writing tests- it's not just that Tridium tells me I have to.
Then, we'll build up both a class and a test class in Niagara.
Part of that will showcase a way to test within a running station that is coming to the public API in 4.14.
Last, I'll highlight some useful methods and techniques for writing tests in Niagara.



Why write tests?

hello

Presenter Notes
Presentation Notes
Why do I think tests are important?  It’s partly based on experience.  Before Tridium, I was working on machine control software and one of our developers suggested we create an automated test suite.  We were strapped for time and resources.  Regardless of any software tests, we ultimately had to verify everything on the hardware so the decision was made to spend the time there and not upfront.  I remember sitting in front of a machine on a Friday afternoon and, after hours of manual tests, finding a defect.  Now, after making the fix, I would have to repeat all of that testing to ensure there was not regression.



Don’t break anything!!!

Bear Trap
Minnesota Historical Society,
CC BY-SA 2.0,
via Wikimedia Commons

Presenter Notes
Presentation Notes
At this same company, when we were getting ready for a release and there was one more thing to slip in, my boss would have us imagine putting our hand into a bear trap.
Were we confident this wouldn't break anything?  How could I answer that?  If it did break something, my boss would say, snap!
These things are in the back of my mind as I'm writing tests today.

https://commons.wikimedia.org/wiki/File:Bear_trap.jpg
https://creativecommons.org/licenses/by-sa/2.0


Why write tests?

Have confidence that code is…
• Doing what it should
• Hasn’t broken anything
• Won’t be broken by anything in the future

Presenter Notes
Presentation Notes
I want to have confidence that my code is
doing what it should,
hasn't broken anything,
and won't be broken by anything in the future.
 
Yeah, it's time upfront but it will save so much time later and you can avoid those last minute fire drills.  Tests give you peace-of-mind.  They give you freedom to add new features and improve existing ones.



How tests should be treated

“Test code is just as important as production code.
It is not a second-class citizen.
It requires thought, design, and care.
It must be kept as clean as production code.
…
If you don't keep your tests clean, you will lose them.  
Without tests every change is a possible bug.”

Presenter Notes
Presentation Notes
How should tests be treated?  Someone who discourages dirty code writes:
Test code is just as important as production code.  It is not a second-class citizen.  It requires thought, design, and care.  It must be kept as clean as production code.
If you don't keep your tests clean, you will lose them.  Without tests every change is a possible bug.



Testing non-Niagara classes

hello

Presenter Notes
Presentation Notes
Ok.  Pep-talk's over.  Let's first look at testing a non-Niagara class.



Java Floating-Point Demux

• Sign bit
• Exponent
• Fraction

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

Double Floating-Point Format
Codekaizen,
CC BY-SA 4.0,
via Wikimedia Commons

Presenter Notes
Presentation Notes
This class breaks a double-precision floating-point value into its IEEE 754 components: a sign bit, 11-bit exponent, and 52-bit fraction.

https://commons.wikimedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg
https://creativecommons.org/licenses/by-sa/4.0


Presenter Notes
Presentation Notes
When this setValue method is called, it updates the value field and all these other fields as well.



Presenter Notes
Presentation Notes
Here is my test class based on TestNG.
We're using TestNG version 6.14.3 in Niagara.
This test method calls setValue and then asserts that the bits field is updated to the correct value.
I can run all of test methods in this class right from IntelliJ and I get a nice report once the tests are finished showing me that everything is passing.



Testing in Niagara

hello

Presenter Notes
Presentation Notes
Next, I'll build up a Niagara component to do the same thing.



Presenter Notes
Presentation Notes
Here's an empty subtype of BComponent.  We'll start by first writing a test.



Presenter Notes
Presentation Notes
Here's my test class.  Given an instance of BDoubleDemux, when the value property is updated, then the bits property will also be updated.



Presenter Notes
Presentation Notes
Before this can be compiled, we need to add the value and bits properties.
Now, we'll run out test class with IntelliJ... which fails...



Cannot use IntelliJ

java.lang.ExceptionInInitializerError
...

Caused by: java.lang.NullPointerException
at javax.baja.sys.Sys.loadType(Sys.java:445)
at javax.baja.sys.BObject.<clinit>(BObject.java:34)
...

Presenter Notes
Presentation Notes
Sys.loadType is throwing a null pointer exception.  It needs something created when booting up the Niagara framework.



Use test.exe on Niagara types

• Extend BTestNg
• test {type spec}
• Other patterns available
• Results: workbench_user_home/reports/testng

Presenter Notes
Presentation Notes
Instead of running the test within IntelliJ, we need to run it from within the NRE through test.exe.
Our test class must extend BTestNg and its type spec can be the main argument to test.exe.
There are other patterns you can use with test.exe- I'll show those in a minute along with where to find the test results.



Presenter Notes
Presentation Notes
Here's that same test class except that extends BTestNg.



Presenter Notes
Presentation Notes
On the Niagara console, if you run test.exe without any arguments, you can see its usage details.  You can run all the test classes in a module or use a regex to run classes with a matching package reference.



Presenter Notes
Presentation Notes
We're going to run our single test class.
Alright, we've seen our test fail. 



Presenter Notes
Presentation Notes
Let me show you where you can find the test report.
This is my user home.  Go into reports and then testng.  I prefer the emailable report.



Presenter Notes
Presentation Notes
Now, let's go implement something and get this test to pass.
Here's a changed callback that converts the value into bits.
Test method is passing now.



Remote programming requirement

… proxy components receive all the standard change 
callbacks like changed() or added().
Typically developers should short circuit these callbacks if 
the component is not running since executing callback code 
within a proxy can produce unintended side effects.

Presenter Notes
Presentation Notes
Here are some notes from the Niagara help article on remote programming.
 
local:|module://docDeveloper/doc/remoteProgramming.html



Presenter Notes
Presentation Notes
Update the test method with “whenRunning” and add an assertTrue that the component isRunning at the start of the test.
Add another method that asserts the bits property is not changed when the value property is changed but the component is not running.



Presenter Notes
Presentation Notes
All our tests are failing.  The previous test because isRunning is false and the new test because when isRuning is false, the bits property is still being updated.
One way to get isRunning to return true is to use a mock.  I'll show that later.  The normal way isRunning returns true is when the component is part of a running station.



Testing in a station

hello



BTestNgStation

• Basic services
• Role, User, Category, Authentication
• Alarm, History, Job
• Box, Fox
• (opt-in) Search, Web

• Roles/Users
• Super
• Admin (rwiRWI)
• Operator (rwi)

Presenter Notes
Presentation Notes
Starting in 4.14, we've added BTestNgStation to the public API of test-wb.  Test classes that need a running station can extend this class.
It starts and stops a test station with some required services in it: role, user, alarm, history, fox, etc.
The search and web services will also be added if enabled.
The role service has super, admin, and operator roles and the user service has super, admin, and operator users that are given those corresponding roles.



BTestNgStation

• Drivers folder
• Niagara Network

Presenter Notes
Presentation Notes
There's a Drivers folder with a NiagaraNetwork in it.



configureTestStation

• Add anything to the station before it starts
• Convenience methods for adding roles and users

Presenter Notes
Presentation Notes
There are a few methods that can be overridden.
 
configureTestStation can be used to add additional roles, users, networks, or anything else that should be in the station before it starts.  There are convenience methods for adding roles and users.  



setupStation

• Actions for after station start but before any test methods
• Must call super.setupStation
• Station has started once super.setupStation finishes
• Keeping alwaysRun is optional

Presenter Notes
Presentation Notes
setupStation can be used for actions that must happen after the station starts but before any test methods.  super.setupStation must be called from the override and the station has started once the call to that super method has finished.
setupStation in BTestNgStation has the "alwaysRun" attribute parameter set to true.  This only ensures the parent method is called regardless of any enabled groups.  If you're not using groups, you could leave it off.



teardownStation

• Actions for before or after station stop after test methods
• Must call super. teardownStation
• Station has stopped once super. teardownStation finishes
• Keep alwaysRun so station clean-up happens
• Do not allow exceptions before super.teardownStation

Presenter Notes
Presentation Notes
teardownStation can be used for actions that must happen before or after the station is stopped.  Like with setupStation, super.teardownStation must be called from the override and the station has stopped once the call to that super method has finished.
Also like setupStation, teardownStation in BTestNgStation has the "alwaysRun" attribute parameter set to true.  You should keep the "alwaysRun" parameter on any overrides.  When set to true, it ensures the test station is cleaned up even if one or more methods invoked previously failed or were skipped.  Without it, threads started by the station cannot be stopped and subsequent BTestNgStation subclasses won't be able to run.
Also, to ensure the station is properly cleaned up, do not allow any exceptions to be thrown before the call to super.teardownStation in your override.




Presenter Notes
Presentation Notes
So, our test class will extend BTestNgStation.



Presenter Notes
Presentation Notes
I'm going to add the DoubleDemux to a folder instead of directly to the root of the station.  Here's a field for that folder...
The folder is added to the station in the configureTestStation override.
By putting the demux in the folder, I can simply clear the folder out in an afterMethod.  If I called removeAll on the root of the station, the Drivers folder and its networks would also be removed.
Now, I add the demux to the folder in the "whenRunning" test.




Presenter Notes
Presentation Notes
The "whenNotRunning" test is still failing because the bits property is still be updated.



Presenter Notes
Presentation Notes
Add the "isRunning" check and both test methods should be passing.



Presenter Notes
Presentation Notes
Since we have this more useful BTestNgStation, why use BTestNg at all?  Because of test station startup, every BTestNgStation subclass takes a fixed amount of time for that on top the time for its test methods.  Here's a report after running every test in our module.
The report shows the execution time for each class.  The BTestNgStation classes are at least 3 seconds each while the BTestNg classes take milliseconds.



BTestNgStation overhead

• Subclasses have a fixed station start-up time
• May want to limit usage to when necessary

Presenter Notes
Presentation Notes
If you have many more station subclasses, the overhead of BTestNgStation can make the total test execution time really long.  Also, it doesn't make sense for tests of Workbench only code because those classes never "running".  So, you might want limit the use of BTestNgStation to when it's actually necessary.




Test helpers

hello



Presenter Notes
Presentation Notes
Instead of using BTestNgStation, let's look at how we could use mocking here.
This version of the test class extends BTestNg.  Instead of instantiating DoubleDemux directly, I am using Mockito.mock and stubbing the isRunning method to always return true.



Presenter Notes
Presentation Notes
To use Mockito at all, I need to add this testUberjar to my Gradle file.



Presenter Notes
Presentation Notes
This doesn't work because the mock is essentially empty except for the stubbed isRunning method.  Instead, we'll create a spy that calls all the real methods by default.  The spy requires a different stubbing syntax.



Presenter Notes
Presentation Notes
There we go: everything is passing.




Mockito

• testUberjar("org.mockito:mockito-inline:4.11.0")
• May have to spy on BComponents
• Mocking final class or stubbing final methods is tricky

Presenter Notes
Presentation Notes
I think adding components to a test station is easy and more natural.  For the DoubleDemux, it's very simple.  There are other types, however, that are more complicated to test, especially those that exercise network communication.  In those cases, some mocking may be required.
Watch out when trying to mock final classes or stub final methods.  There are ways to get those things to work but it might require some in-depth knowledge of Mockito configuration.



TestHelper

• assertWillBeTrue
• waitForClockChange
• And more…

Presenter Notes
Presentation Notes
In addition to BTestNgStation, we've added a util class called TestHelper that contains some methods useful when writing tests in the framework.  I would like to highlight a few of those.
 
The first is a set of overloaded methods named assertWillBeTrue.  These methods are useful when waiting for an asynchronous condition to be met.
They're better than Thread.sleeps because they're rapidly re-checking the condition so the test can proceed as soon as it's met.
You can specify a very generous overall timeout if something occasionally takes much longer without waiting too long when it finishes quickly.  Let's look at an example.



Presenter Notes
Presentation Notes
Here's an offnormal algorithm that raises an alarm when the out value is not-a-number.  There are at least two ways you might test this.



Presenter Notes
Presentation Notes
The first is by instantiating the algorithm, adding it to an AlarmSourceExt, and adding that to a point.
The point's fallback is initialized and then the point is added to a folder that is part of the test station.
On added, the point's asynchronous execute action is invoked and, once the action finishes on the engine thread, the point's out will match the fallback value.
 
The assertWillBeTrue polls out.value every 10 milliseconds and as soon as it matches the fallback, the test proceeds.
The test fails if the condition is not met after 5 seconds.
Note the String supplier- this lambda will be run when the timeout is reached and the out.value at that moment will be logged instead of the out.value at the start of the call to assertWillBeTrue.
 
The AlarmSourceExt should be normal at the start of the test.  Then, the point is overridden with not-a-number.  That's another asynchronous action so there's another assertWillBeTrue.  Once the out.value has been updated, the alarm state should be offnormal.




TestHelper

• assertWillBeTrue
• waitForClockChange
• And more…

Presenter Notes
Presentation Notes
The other TestHelper method I wanted to highlight is waitForClockChange.  This one's useful when asserting that a timestamp value has been updated by some other operation.
If the test runs faster than the resolution of the clock, you won’t be able to detect the timestamp change.
waitForClockChange forces the test to wait for the next clock tick.



Presenter Notes
Presentation Notes
I want to go back to that DoubleAlarmAlgorithm.
The important method in this subclass of BTwoStateAlgorithm is the isNormal method.
Testing the isNormal override directly would be easier than testing it indirectly through an AlarmSourceExt on a NumericWritable.
isNormal is a protected method so I am using privaleged accessor to call it from my test method.
Privaleged accessor requires another testUberjar dependency.




Presenter Notes
Presentation Notes
This test class extends BTestNg only and not BTestNgStation.  Very simple test method.





Privileged Accessor (PA)

• "com.e-movimento.tinytools:privilegedaccessor:1.2.2“



Tridium’s commitment to testing

54824

72441

81661
86168

0

20000

40000

60000

80000

100000

4.10.6 4.12.2 4.13 4.14

Test Count by Version

Presenter Notes
Presentation Notes
Lastly, this graph is meant to show our commitment at Tridium to testing.  It's part of our process and the number of tests will just keep growing.



Documentation

• module://docDeveloper/doc/test.html
• module://docDeveloper/doc/build.html
• test-wb source code available in help system



Thanks!

hello

Presenter Notes
Presentation Notes
Thanks for attending and listening in.
I hope you're writing automated tests in Niagara and find it easy to do so.
I also hope that you will be able to test more effectively using the new BTestNgStation.
I'm sure I've run over so we'll hold questions until later. Also, feel free to bring your questions to me later.


	Slide Number 1
	Automated Testing
	Outline
	Slide Number 4
	Don’t break anything!!!
	Why write tests?
	How tests should be treated
	Slide Number 8
	Java Floating-Point Demux
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Cannot use IntelliJ
	Use test.exe on Niagara types
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Remote programming requirement
	Slide Number 24
	Slide Number 25
	Slide Number 26
	BTestNgStation
	BTestNgStation
	configureTestStation
	setupStation
	teardownStation
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	BTestNgStation overhead
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Mockito
	TestHelper
	Slide Number 45
	Slide Number 46
	TestHelper
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Privileged Accessor (PA)
	Tridium’s commitment to testing
	Documentation
	Slide Number 54

