

Niagara
Internationalization
Ajay Mathew

Overview

• Internationalization
• Localization
• Lexicons
• XSS
• Lexicon Tools

Internationalization.

hello

Overview
• Internationlization (I18N)

• Implementing software for the global market

• Localization (L10N)
• Adapting (I18N) to a specific region or language.
• Achieved through translating text, applying units, number formats etc.

Presenter Notes
Presentation Notes
Internationalization is the process of creating a software that can be adapted to any region or language by the means of minimal to no engineering efforts.

Localization is adapting the internationalized software to a specific region or language by translating text, applying region specific time formats, units, number formats, etc.

Localization with Niagara

Lexicons

Lexicons
• What are Lexicons.
• How do Lexicons relate to Niagara.
• Localization with Lexicons.

Presenter Notes
Presentation Notes
What are Lexicons:
Lexicons are simple text files that map various entities aka “keys” to localized language character values and these files are distributed as modules that are included in the workbench installation.
A module may contain multiple lexicon files, each of which is associated with a language.
So how does this relate to Niagara?
Niagara provides non-English language support with the use of lexicons. And, lexicons are identified by Java locale codes, such as “fr” for French, “de” for German, or “en” for English.

This is an example of lexicon key values and its key pairs. So, every language has its own lexicon file, and, the key value pairs are what the translator will use to translate each language. The first one is English, the next one is German, and, French and Turkish.

Java – Example
private static void showExample(Context cx)
{

LexiconModule lex = LexiconModule.make("web");
System.out.println("This is the German Example:");
//Language is set to German in context with Java Locale code "de"
System.out.println("Context Language: " + Context.getLanguageTag(cx));
// M\u00E4rz
System.out.println("lex.getText is: " + lex.getText("march", cx));
// M\u00E4rz
System.out.println("lex.getSafeText is: " + lex.getHtmlSafeText("march", cx));

}

Presenter Notes
Presentation Notes
This is a Java example of how we use Niagara lexicons and its key value pairs. So, I have very simple method here, within this we are looking at the lexicon key of “March”. Which is a lexicon entry from the web module for the German lexicon. From this example you can see that the we have a context getting passed into this method. So I have set the language to German in the context which means that I just have to pass the context around whenever I want to retrieve a specific language key. So, in this example we’re getting the lexicon key for “March” and we’re getting that from the web module. One thing I would like to draw your attention here to is the getText and the getHtmlSafeText methods. The getText method returns the key value as it is whereas the getHtmlSafeText will escape any characters that is prone to XSS.

JavaScript - Example
require(["lex!web"], function (lexs) {

const [WEB_LEX] = lexs,
LEX_KEY = "march";

console.log(("Not Safe: ",WEB_LEX.get(LEX_KEY));
console.log("Safe: ", WEB_LEX.getSafe(LEX_KEY));

});

Presenter Notes
Presentation Notes
This is the JS example of the previous Java example. One thing I would like to mention is the syntax used. JavaScript uses the lex bang syntax to reference the lexicon module and in JS its get and getSafe instead of getText and getHtmlSafeText.

Localization with Niagara

Numbers

Numbers

• 1,000.00 (en) – English
• 1.000,00 (de) – German
• 1’000.00 (de-CH) – German for Swiss Region
• 1.000,00 (fr) – French

Presenter Notes
Presentation Notes
For Numbers, as you can see this is a representation of the number 1000 in English, German, German for the Swiss Region and French. From this you can see that that the decimal separators and decimal points are different, making lexicons region dependant as well.

Localization with Niagara

Date and Time

Date and Time

• Date and Time has 4 Parts: Date, Time, Meridian (AM/PM),
Time Zone.

Presenter Notes
Presentation Notes
Date and Time has a date part, a time part, a meridian part and a time zone part. Meaning they are extensively customizable and you can make changes to theses by going to the workbench settings or the user settings.
If you get a chance to play with these settings you will notice that there are some pre-defined formats for date and time, but they are extensively customizable beyond that as well.

Localization with Niagara

Units

Units

• Units set to ‘None’ by default. But, ‘Metric’ and ‘US/English’
are available

Presenter Notes
Presentation Notes
Units will default to none if the user does not set them, but, US and Metric are available at the user’s discretion.

Configuring Options and Setting Units

• For Workbench User:
• Workbench -> Tools -> Options -> General

• Sets “niagara.lang” system property

• For Station User:
• Config -> Services -> UserService -> User

• Sets language, time formats and units.

• Alternatively set locale in console
• Command: wb –locale:”country code”

Presenter Notes
Presentation Notes
So you might be wondering, okay this is all great but how do you actually configure these settings. Think no further.

There are a few ways in which you can configure these settings, and the first one is setting them via workbench for the user, so, you would open up workbench, got to tools at the top then select options and click on general. From there you can set the language by editing the locale language code by typing it in, e.g. “fr”, “de” or “tr”. This will set the preferred Niagara language for your system. And for any reason the application is unable to get a hold of a context then it will use the Niagara Language set by the user as the platform language.

Another way in which you can configure these options is by setting them for the station user, and this can be set to every user. So, things like the language, time format, and the unit conversion. Furthermore, the time format can also be modified and set in the baja.lexicon file. So, if you have a time format configured in the baja.lexicon file you can plug that in and that will set the time format for you.

An alternative method in which you can use to set the language is to start workbench via the console with the language locale code you want. So, wb is the usual command in which you use to open workbench in the Niagara console and if you want it to open it up in a specific locale you simply add space –locale:”country code” e.g. fr to open it in French, de to open it in German and so on and so forth.

Hello World

Why do Java developers wear glasses?
Because they can’t C#

LexiconModule

• Fixes shortcomings of legacy Lexicon class.
• Efficient, multilingual and reliable.
• Recommended due to context getting passed.

Presenter Notes
Presentation Notes
A quick note on the lexicon module, So, lexicon modules were introduced in Niagara 4.8 and if you are familiar with initialising and creating lexicons in prior to this then lexicon modules fix the short comings of legacy lexicons.

So, with legacy lexicons it depended on the way it was initialised, in some cases you didn’t have the correct context getting passed around which resulted in the platform default getting used instead.

Since the introduction of lexicon modules, it fixes this issue, but bear in mind that in order for this to happen you must pass in the module name and make the relevant calls to the relevant methods as we saw in the previous slides.

So, by passing around the context with the lexicon, it knows what lexicon to use, which prevents it from defaulting to the platform default lexicon.

Time Formats and Facets
private void showFormattedDate()
{

Context cx = new BasicContext(Context.NULL, BFacets.make("timeFormat",
getDateFormat()));

setDateWithFacets(getTimeStamp().toString(cx));
}

Presenter Notes
Presentation Notes
You can set time formats as a facet of a slot, So, in this example I’m setting the facets of the time slot via the context by using the BFacets.make and I’m passing the context into the setter method of the time slot or the date slot in this case.

On the bottom half of my screen you can see a property sheet with 3 slots. 1 slot to enter the value of the facet in as a string, another which shows you the actual time stamp and the 3rd slot which displays the formatted timestamp.

I have set the facets of the date format slot to be the value entered into the slot and have given the facet “timeFormat”

So, we have entered the time format or date format in this case to MMM-YYYY which will show May-2023.

If we wanted to see just the year from the time stamp we would just have 4 Y’s which would then display just the year.

So, Facets give metadata on slot and its key value pairs and in this case time format is the key and the value of that key is “MMM-YYYY” which give you the month and the year

Time Formats and Facets
BFacets.SHOW_TIME=false; 15-05-23
BFacets.SHOW_DATE=false; 13:30:00 UTC
BFacets.SHOW_MILLISECONDS=true; 13:30:00.015 UTC
BFacets.SHOW_TIME_ZONE=false; 15-05-23 13:30:00 PM

Presenter Notes
Presentation Notes
Facets are useful in the sense that it give you the ability to show and hide what you want to display in terms of date and time. For example, if you don’t want to see the date or time you could simply turn it off with facets or on if you do want to show them.

Note: Time format is a valid facet in itself except there isn’t a constant for it.

Lexicon Tools

Diagnostic Lexicons

Diagnostic Lexicon

• What is it?
• How is it used?
• Why is it used?
• Path to system.properties

• Niagara installation folder -> defaults folder -> system.properties

Presenter Notes
Presentation Notes
The Diagnostic Lexicon tool was introduced in 4.8. So, the diagnostic lexicon tool, helps you uncover parts of your application that is not localised along with showing if there are any issues with the localised text itself.

Diagnostic lexicon can be turned on in the system properties. Bear in mind you do have to type this into the system.properties file as it is not present on installation.

The system.properties can be found in the Niagara installation folder. From the installation folder you would go into the defaults folder and in there you would find the system.properties file.

Diagnostic Lexicon

Presenter Notes
Presentation Notes
In this example, we’re setting 2 tilde characters as the pre-fix which is then applied to every lexicon entry in our application, and as you can see on the screen the pre-fixes are there.

So, this is an example of the login screen and from this you can see that the username, password, change user link and the login button are all localizable.

Diagnostic Lexicon

Presenter Notes
Presentation Notes
Another feature of the diagnostic lexicon is that, if you pre-fix using the this specific format it will include extra information as to where your lexicon values are coming from.

Here, in this example you can see that the username is coming from the web module for the English language and the name of the key here is login.username.

So, this extra information is all diagnostic information, which will help in identifying where your lexicon keys are, where they’re coming from, or if you have any issues with any keys, you know where to look.

Cross-Site-Scripting (XSS)

• Escape the untrusted – Use getSafe/getHtmlSafe
• Use diagnostic lexicon to uncover the known/unknown.
• Dialogs text is safe by default –

dialogs.show(“maliciousScript()”) is safe

Presenter Notes
Presentation Notes
Cross Site Scripting otherwise known as XSS is when malicious scripts are injected into otherwise benign and trusted websites. To prevent this we use getSafe and getHtmlSafe methods.

In addition, module.lexicon is a text file, so you are able to enter and save anything you wish into it, making it prone to XSS. So, if you are not sure as to what method to use, use the afore mentioned methods, which are getSafe and getHtmlSafe methods, which will eliminate the risk of XSS.

XSS – Example

lex.get (“login.username”) lex.getSafe(“login.username”)

Presenter Notes
Presentation Notes
This is an example of XSS scripting attack and in this example as you can see on the screen, we’re trying to inject some malicious text into our module.lexicon file and we’re going to see what happens in the event we don’t use getSafe.

So, on the login screen you can see that if I used lex.get then it would show this popup on running the malicious JS script but, however, if I was to use getSafe then the escaped version of that key shows up being safer.

Useful to know

• Niagara Types
• BajaUI/UX Commands
• Slot Names

Presenter Notes
Presentation Notes
So, some things that are useful to know, other things that can be localized are the BajaUI and the BajaUX commands. Niagara types, Slot names, these can all be localized as well,. And, as an example, in my lexicon for the add command, I have a display name, an icon, and a description. So, by following this example you are able to make entries for all your names that you wish to localize and make use of them directly via your lexicon.

BFormat Example
const format =
baja.Format.make('%lexicon(bajaui_wb:slotsheet.commands.add.description)%');

format
.format({})
.then(function (result) {
$('#formatExample').text(result);

});

//Java - Add a Widget
BFormat.make("%lexicon(bajaui_wb:slotsheet.commands.add.description)%");

Presenter Notes
Presentation Notes
BFormat. In Niagara BFormat aids in customizing the display of your slots. So, BFormat has various methods in which you can choose from. And one of the methods is in which it takes in a lexicon function from which you can pass in the module name and a lexicon key which will then take the relevant information from the lexicon.

So, from this example here, you can see that slotsheet.commads.add.description is coming from the lexicon and also the add widget as well.

Lexicon Tools

Workbench Lexicon Tool

WB Lexicon Tool

Presenter Notes
Presentation Notes
In the beginning I talked I about lexicons and key value pairs and as an example I used German, French and Turkish and its representation of Monday in the lexicon file. So, workbench has this tool called “workbench lexicon tool”. So, every Niagara installation comes with a set of localised modules. And, by using this workbench lexicon tool you can add new key value pairs or amend or override existing key value pairs within this tool. To override values, you simply just plug in translated value and save it.

So what happens after it is saved.

So, after it is saved, it just overrides it locally for your workbench, and if anyone uses another workbench on another machine, they will not get to see that change. And so, in the view menu if you switch to lexicon module builder, you can pick up on all the things that you’ve overridden and turn them into modules and distribute them.

Lexicon Tools

Differential Summary Tool

Differential Summary Tool

• What is it?
• How do you use it?
• Why use it?

Presenter Notes
Presentation Notes
The lexicon differential summary tool aka lexicon diffs tool is a tool that is used to compare 2 different Niagara installations in order to find the differences between the modules they come with. I.e., lexicon keys and its value pairs.

As you may already know, when a new version of Niagara gets released, lexicons change, new keys get added, keys get updated, some get deleted. And it would be real pain if you were to go digging through the lexicon files to see which ones are added, updated, or deleted.

Fortunately, this lexicon diffs tool will allow you to see the change in the lexicons. Now, this is strictly a command line tool so its not user facing, but it is simple to use. You simply download a jar file (which can be found on the community website) which allows you to compare 2 versions of Niagara that you want to find the change in between lexicons.

Differential Summary Tool

• 2 Files
• LexiconDiff.Json
• TypeDiffTool.txt

Presenter Notes
Presentation Notes
java -jar LexiconDiffTool.jar <previousNiagaraBuildImage> <currentNiagaraBuildImage> <outputDirectory>

Now this produces 2 files. A text file named “TypeDiffTool.txt” and a json file called “LexiconDiff.JSON”

The JSON file compares the lexicons from the 2 build images and writes the differences to a JSON file. And, within the file, the lexicon property files are flagged as added, modified, or removed.

The text file will compare the module.include file for each module for the 2 comparing build images. And, new Baja types are listed for each module, along with the associated fully qualified class names.

LexiconDiff.Json File

Summary

• Numbers, Date and Time, and Units are localizable.
• Use Lexicon Module and pass the context around.
• Use get when you are sure and getHtmlSafe if you are

not.
• Facets can be used to set time formats on a slot and it

also gives meta data on a slot.

Summary

• Diagnostic Lexicon tool can be used to show parts of your
application that is not localized along with any issues with
localised text.

• Use BFormat to customize display of slots.
• Use the WB lexicon tool to add/edit/override lexicon keys.
• Use the Differential Summary Tool to find differences

between 2 different Niagara installation lexicons and
modules.

Any Questions?

Thank You.

Q&A Session at 5PM

Please Email: supportemea@tridium.com
Subject: Dev Day

mailto:supportemea@tridium.com

Next Up!

Mike James: Station and Platform Debugging

	Slide Number 1
	Niagara Internationalization
	Overview
	Slide Number 4
	Overview
	Slide Number 6
	Lexicons
	Java – Example
	JavaScript - Example
	Slide Number 10
	Numbers
	Slide Number 12
	Date and Time
	Slide Number 14
	Units
	Configuring Options and Setting Units
	Slide Number 17
	LexiconModule
	Time Formats and Facets
	Time Formats and Facets
	Slide Number 21
	Diagnostic Lexicon
	Diagnostic Lexicon
	Diagnostic Lexicon
	Cross-Site-Scripting (XSS)
	XSS – Example
	Useful to know
	BFormat Example
	Slide Number 29
	WB Lexicon Tool
	Slide Number 31
	Differential Summary Tool
	Differential Summary Tool
	LexiconDiff.Json File
	Summary
	Summary
	Slide Number 37
	Slide Number 38
	Q&A Session at 5PM
	Slide Number 40

