

NDriver
– with a library
Jason Woollard / Nick Dodd

Presenter Notes
Presentation Notes
JW:

We’ve left the ndriver overview diagram on this slide, not to scare you off! But as an aide memoir for those of you who may have already completed the developer training course, or created a driver before.

Essentially this is going to be quite a simple presentation, about how _much_ of that diagram you can chop off – a nice low code session to start the day with 

NDriver – with a library?

• Typically, the New Driver wizard
anticipates developers will be parsing a
protocol into Niagara’s Object Model

• Anticipates modelling via LinkMessage
and NMessage implementations

• What if you ‘simply’ wish to use an off-
the-shelf library?

”A
Library”

Presenter Notes
Presentation Notes
JW:

Some of you might be familiar already with the *Template Code* that is output, after running the New Driver wizard via Tools > New Driver in Workbench?
You answer a few questions, repeatedly click next and voila - a template is created for you to begin driver development with…

As mentioned, we’re basically removing a chuck of a traditional ndriver project – we won’t be needing those messaging when we use a library, hence why that part now ‘concealed’ in this diagram –

And we will go to highlight the override points you might leverage using a library in a driver….

The takeaway being - There are still benefits to using ndriver, with a library…

You’re assuming I know what NDriver is?

• Niagara’s current Driver Framework

• Includes features for modelling diverse protocols e.g.
• Unsolicited Messages,
• Retries, etc.

• Common look and feel

• Models points / schedules / alarms / histories

Presenter Notes
Presentation Notes
JW:

The next few slides are a very rapid overview of ndriver to give some perhaps necessary context – the Driver framework allows rapid mapping or connection of disparate protocols into the framework and would be the recommended approach for almost all new drivers.

There are a whole bunch of benefits to using ndriver – not least the messaging model or patterns it promotes, but also the result being the common layout customers are familiar with i.e. Network > Device > Points and so on with other data types.

Now paraphrasing slightly..

What has NDriver ever done for us?

• Wizard  Template Code
• Discovery
• Auto Manager (wb and ux views)
• Worker, Logging, Parsing Utils
• Access to Serial, UDP, TCP, HTTP Link Layers

• X Message: Transactions, Fragmentation, Retries, Timeouts

• Licensing; Training; Support; Marketplace; Community;
Security … plus, the rest of the Framework!

Presenter Notes
Presentation Notes
JW:

.. with What Have The NDriver Ever Done For Us? 

There is support to add discovery of points; schedules and so on into the template generated by the wizard.

Auto manager means custom views are generated without the need for extra modules or code

Convince tools for parsing data, running on appropriate threads via a Worker, or end user debugging … for the various link layers you can see here… and all benefits without the painful minutia one would have to consider accessing those transports from a different level of the stack, all while being portable to the various Niagara controllers you can find out in the exhibition area!

The red crossed items are typically the main reason to adopt ndriver, but these aren’t used for our library project, as the will library takes care of these things.

Highlighted in orange are some of the other benefits the business provides to support making your development endevours profitable and enjoyable – such as support or licensing infrastructure, offering a good potential return on invested effort.. I think it’s fair to say the existing extensive driver list is testament to this communities understanding of that already!

The Regular Message…

Presenter Notes
Presentation Notes
JW:

We will just do a quick pass through of the message flow, using a request / response message:

So starting top left

NMessage instance created by application (for example – check the ping endpoint, or write to a point)
NComm sets up a transaction for this
and the NMessage is used to create a linkMessage with appropriate Bytes in, to send to the linklayer and onto the wire

Now when a Response is received by link it travels up the right side of the diagram
LinkMessage becoming an Nmessage which will map to the original request (as we are doing request / response here) causing some appropriate change in application logic, e.g. pingOk.

Unsolicited incoming messages work only on the right hand side, with the same steps resulting in an Nmessage that would be processed by a listener

Message in a Model
• NMessage: Read / Write

/ Connect / Ping /
Heartbeat / Responses
• Mapping to application logic
• Many classes

• LinkMessage:
• byte[] wrapped for transport
• Single class

• |0, 70, 80, 23 |0, 34, 54, 23 | 0, 2…

public class FooSerialLinkMessage extends LinkMessage {
byte[] data;

@Override
public void setMessage(NMessage msg) {}

@Override
public boolean receive (InputStream is) { return false; }

public class FooMessage extends NMessage {
int fooMsgType = MY_TYPE;
int tag;
int prop1;
float prop2;

@Override
public void fromInputStream (InputStream is) {}
@Override
public boolean toOutputStream (OutputStream os) {

return true; }

Presenter Notes
Presentation Notes
JW:

Nmessage is the application level view of the message, you might contain logic in that class, or simply use it as a container for values processed elsewhere but essentially the message should map to some part of theprototocol being modelled to perhaps read / write / handshake / authenticate / reset or so on so you would have many classes of these… which you plumb into Niagara as a point; history; alarm or if you’re exceedingly brave a schedule.

Conversely there is only one implementation of linkmessage, which is used by the linklayer to send or receive the byte representation of our messages to the wire, it basically wraps a byte[] and may be setup to parse framing characters i.e munches up streams of bytes (maybe ascii text) – delimited by something like length, null characters, hex codes, or headers for dynamic length.

We’ve covered the messaging part of ndriver extensively in other material so this is just a brief recap of the Message model – details on how we process unsolicited messages, how requests can be sent non-blocking, or request response using tags to match up is what we are skipping over.

Hence why our nmessage has a fromInputStream and toInputStream method … the maps it down to the byte array, and conversely linkmessages are created from that nmessage or data received on the linklayer.

I can use libraries?

• Sure, we do it all the time (see lib/readmeLicenses.txt)
• Uberjar via myModule-rt.gradle.kts e.g.

dependencies {
// NRE dependencies
nre("Tridium:nre")
// Niagara module dependencies
api("Tridium:baja")
api("Tridium:control-rt")
api("Tridium:driver-rt")
api("Tridium:ndriver-rt")
uberjar("com.hazelcast:hazelcast:4.2.7")

}

// Supported dependency types:
module://docDeveloper/doc/build.html#dependencies

Presenter Notes
Presentation Notes
JW:

The syntax to include, or uberjar, another module or library into our driver module is highlighted at the bottom of the sample gradle file –

It pulls the library from Maven and makes it available both in the IDE and built Niagara module, so we can start working with it right away!

Are you _sure_ I can use libraries?

• Security Says, No?

• As mentioned in the “news” we have ever increasing
permissions available for developers compared to 4.0

• In the case of hazlecast-rt it required:

GET_ENVIRONMENT_VARIABLES
MANAGE_EXECUTION

REFLECTION
MBEAN_PERMISSION

NETWORK_COMMUNICATION

Presenter Notes
Presentation Notes
JW:

Now those of you who have been developing with Niagara 4 for a while now, might have some cynicism about our message that using 3rd party libraries is all fun and games ….
Because you may have had an unpleasant experience with the security manager

So as mentioned in the news, with the current versions of N4 there are so many more permissions that can be assigned to your module, via the module-permissions file – the reduction in developer support traffic for issues in this area means we are confident this is a good time to suggest you explore what 3rd party libraries can bring to your projects!

Tell me about this *library* !

• Sorry – the least important part of the presentation 

• Could have been anything:
• Procrastination scheduler,
• NTP
• Our favourite… another Traffic Light!

• We chose Hazlecast
• ‘A Distributed in-memory data grid’
• aka: a rather funky HashMap

Presenter Notes
Presentation Notes
JW: However, the Gradle logo aside, this leaves an Elephant in the room: _which_ library?

Well The fact I found a procrastinating schedular implemented in Java should give you a clue how that decision process went!
… ironically code that defers tasks before dropping half of them, is one problem I don’t need a computer to implement 

The good news that a smorgasbord, of potential options exists… (seriously, it was almost as hard as naming things!)… but it means there are as many opportunities out there for you guys to find something innovative to use– and further motivated this presentation.

Anyways… we finally settled on something called Hazlecast, which Nick will explain:

Hazelwhat?
• Clustered Maps

• IMap<K,V> - any Java Object

• Values distributed in cluster
• Cluster rebalance – fault tolerance

• Read through / write through
• Front a real data source with MapStore

• Docker - scaling
Hashcode = f1ac54

Presenter Notes
Presentation Notes
ND: If you have never heard of Hazelcast before, it is essentially a java based Map which distributes over a cluster, there is an interface IMap which holds and java object as the keyvalues
The map stores serialized java objects and then distributes them around the cluster according to partitioning rules you can setup, by default the hashcode of your object used for distribution, a client can talk to any node in the cluster to retrieve any value
If a node goes down then the values are automatically rebalanced
You can setup a mapstore as a real datasource to back the cache, and then employ read though or write through strategies
Also hazelcast supports running in a container so you can automatically scale

Hazelwhat?
• Clustered Maps

• IMap<K,V> - any Java Object

• Values distributed in cluster
• Cluster rebalance – fault tolerance

• Read through / write through
• Front a real data source with MapStore

• Docker - scaling

Rebalance!

Hazelwhy?
• Cache - Keep the heat off your database
• Session data
• Key-value database
• Data processing

Presenter Notes
Presentation Notes
ND: You might choose to use hazelcast as a cache for your most regularly accessed data to keep the request count down on your database
You might just use it to share values between your cluster such as user login session data / global overrides
You could use it as a straight up no-sql database in it’s own right
Or you could run operations on all the values in the map to maintain cluster wide metrics or calculations

Hazelhow?

• HazelcastInstance
• Join cluster
• Get distributed objects
• Configuration

• IMap
• A HashMap with teeth

HazelcastInstance hz = HazelcastClient.newHazelcastClient();

IMap map = hz.getMap("my-distributed-map");

// regular HashMap stuff
map.put("key", "value");
map.get("key");
map.putIfAbsent("somekey", "somevalue");
map.replace("key", "value", "newvalue");

// eyes emoji
map.lock("key", 5, TimeUnit.SECONDS);
map.evict(“otherKey");
map.putAsync("key", "value", 5, TimeUnit.SECONDS);

Presenter Notes
Presentation Notes
ND: A very quick look at the hazelcast api, it is very simple, joining the cluster as a client is as simple as this top line of code here.

Then once joined, you can retrieve a map by it’s name, you can do all sorts of regular hashmappy things which will look very familiar to you, but there are also many methods you would not normally see, such as locking values, setting Time To Lives on values, ability to add indexes, listeners and processors.

Explain the basic model, please!
• Device - Hazelcast ‘Cluster’

• Map Points to a Single value from Hazlecast
• Uses Point Name for key (not suggested/conventional!)

• ProxyExt - Specifies which Map to look in
• Read + Write supported

Presenter Notes
Presentation Notes
JW

So the overall model is we have a Network – unmodified from the driver wizard, and below that Network the classes we changed are

A Device, which connects to the Hazlecast cluster using an configurable IP address
Points, which use their name to address what they lookup – an extra property might have been preferable in a real world application!
And finally a ProxyExt which specified the name of the Map to lookup in, remember it’s a distributed Map we are using!

Another Overview

Presenter Notes
Presentation Notes
JW

Ok – in this case a picture speaks _a lot_ of words!

But the coloured sections are all we need to focus on – at the top is our HazelCastNetwork– which we haven’t had to modify at all, complete with tuning policies, poll schedular…

The HazelCastDevice is predictably, below the Network, with the green arrow showing the IP Address we added for the “cluster” to connect to

And finally the ProxyExt has a Map Name to look it up in –

I guess if you’ve ever used, any driver, then this layout is somewhat familiar / or even verbatim depending on how long ago that experience was!

Go on - how difficult was it then?
• Run New Driver Wizard

• Deleted:
• HazlecastMessage.java
• HazlecastMessageFactory.java

• Uberjar the library via Gradle

• Keep
• module.palette
• module-permissions.xml

Presenter Notes
Presentation Notes
JW

Well to implement this we started by running the wizard,
removing the 2 auto-generated Message classes we don’t need,
Then included the library using the Gradle file as we saw earlier via the uberjar syntax
And then we added some permissions and modified the highlighted Device and ProxyExt classes

Notably the device, point and device Folders, plus palette file are all good to go … So the answer to title is – not very difficult!

Hazelcast Device

@NiagaraProperty(
name = "address",
type = "BIpAddress",
defaultValue = "new BIpAddress(\"localhost\",

DEFAULT_HZ_PORT)"
)

Add a Property for the
Ip Address of the
service we will connect
to:

Presenter Notes
Presentation Notes
JW

On the Device we added an Address property using a Slot-o-matic annotation with type BIpAddress …

in case anyone here is new to Niagara development, these annotations are (typically) how Properties, Actions and Topics are added to the components you develop.

Hazelcast Device @Override
public void doPing()
{
// instantiate hz object if not connected
HazelcastInstance hz = getHz();
if (hz != null)
{
try
{
hz.getDistributedObjects();
pingOk();

}
catch (OperationTimeoutException e)
{
pingFail(e.getMessage());

}
}
else
{
pingFail("No active Hazelcast connection");

}
}

• doPing is called by the
Ping Monitor at a given
interval

• getDistributedObjects
is a sub-optimal choice
from a performance
perspective

Presenter Notes
Presentation Notes
JW –

The key to our device ping (not ICMP ping!) implantation, is that if getDistirbutedObjects throws an exception we consider that a pingFail, otherwise we exiting with pingOk!
The ceremony code around it can be ignored
It’s worth keeping in mind when choosing a ping implementation for production that this is normally driven by Ping Monitor at a regular interval, so this is a actually a bad choice if this distributed objects method resulted in a lot of network traffic!

What if they disable the ping monitor? Device will be {ok} so should call from started?

Hazelcast ProxyExt

Added properties:
pollFrequency
mapName

Manager Facet to make
mapName editable

@NiagaraProperty(
name = "mapName",
type = "String",
defaultValue = "BString.DEFAULT",
facets = @Facet("SfUtil.incl(SfUtil.MGR_EDIT)")

)

Presenter Notes
Presentation Notes
JW

We also add a Map Name property to the ProxyExt - the class where the rubber meets the road in terms of starting to the value of a Niagara Control Point e.g. Numeric or Boolen into the bespoke format required by the protocol your driver is working with – and use Facets to inform Auto Manager it should be editable when users click the edit button

Keep on polling
Point has been subscribed – register for changes

@Override
public void readSubscribed(Context cx)
throws Exception

{
synchronized (subscriberLock)
{

getHazelcastNetwork().getPollScheduler().subscribe(this);
}
// perform any I/O on own thread here!
new Thread(() -> doPoll(),

"readSubscribedPollThread" + getParentPoint().getName()
).start();

}

! Remember to unsub in readUnsubscribed() !

Presenter Notes
Presentation Notes
ND

Poll – the Hazelcast bit

Get the value out the IMap

@Override
public void doPoll() // runs on poll scheduler thread
{

HazelcastInstance hz = getBHazelcastDevice().getHz();
// get the map
IMap<String, Object> map = hz.getMap(getMapName());
String key = getParentPoint().getName();
// get the value out the map
Object value = map.get(key);
…………….

Presenter Notes
Presentation Notes
ND

Poll – convert to the Common Object Model
……………
if (value != null)
{
try
{
if (isNumeric() && value instanceof Double)
{
statusValue = new BStatusNumeric((Double)value, BStatus.ok);

}
else if (isBoolean() && value instanceof Boolean)
{
statusValue = new BStatusBoolean((Boolean)value, BStatus.ok);

}
else if (isString())
{
statusValue = new BStatusString(value.toString(), BStatus.ok);

}
…………….

Presenter Notes
Presentation Notes
ND

Poll – callbacks

…………….
if (statusValue != null)
{

readOk(statusValue);
}
else
{

readFail(LEX.getText("hz.point.read.no.value"));
}

}
catch (Exception e)
{

readFail(LEX.getText("hz.point.read.failed“, e.getMessage()));
}

Update the point with the read value

Presenter Notes
Presentation Notes
ND

Write()
Can be invoked by the user, or
by other code

@Override
public BReadWriteMode getMode()
{
return BReadWriteMode.readWrite;

}

Perform I/O on your
own thread
@Override
public boolean write(Context cx)
throws Exception

{
new Thread(() -> {
………………………………..
}, "writeSaidThread-" +

getParentPoint().getName()).start();

return true;
}

Return true if a write is
now pending

Presenter Notes
Presentation Notes
ND

Write
Get the map

IMap<String, Object> map =
hz.getMap(getMapName());
String key = getParentPoint().getName();

BStatusValue writeValue = getWriteValue();What are we writing?

if (isBoolean())
{
map.put(key, writeValue.getValueValue().as(BBoolean.class).getBoolean());

}

Write value
to the IMap

writeOk(writeValue);
}
catch (IOException e)
{
writeFail(e.getMessage());

}

Callback to point

Presenter Notes
Presentation Notes
ND

Adding discovery…

Override getDiscoveryObjects() in BHazelcastPointDeviceExt
• < 20 lines of code
• hz.getDistributedObjects() to get all maps
• Convert each to a BNDiscoveryGroup (folder)
• Add each map value as child BNPointDiscoveryLeaf

No need to override manager views,
no wb or ux module!!

Presenter Notes
Presentation Notes
ND

Summary

• Device: doPing(); add BIpAddress property

• Proxy Ext: doPoll(); write(); add 2 properties for Address
and Frequency

• No changes to Network; Device Folder; Point Folder

• Which Library to Uberjar? Please don’t ask us 
• Someone already has 10 business ideas off the research for this!

Presenter Notes
Presentation Notes
ND: There is a lot of diversity in drivers – kind of their nature after all –

How would we handle unsolicited messages from the library?
What about alarms; histories and schedules?

Could I still use NMessage to neatly store logic pertaining to a library I was using – probably if it used streams of bytes (or you can implement those abstract methods to do “nothing”)

doPing; doRead; doWrite…

	Slide Number 1
	NDriver �– with a library
	NDriver – with a library?
	You’re assuming I know what NDriver is?
	What has NDriver ever done for us?
	The Regular Message…
	Message in a Model
	I can use libraries?
	Are you _sure_ I can use libraries?
	Tell me about this *library* !
	Hazelwhat?
	Hazelwhat?
	Hazelwhy?
	Hazelhow?
	Explain the basic model, please!
	Another Overview
	Go on - how difficult was it then?
	Hazelcast Device
	Hazelcast Device
	Hazelcast ProxyExt
	Keep on polling
	Poll – the Hazelcast bit
	Poll – convert to the Common Object Model
	Poll – callbacks
	Write()
	Write
	Adding discovery…
	Summary
	Slide Number 29

