


Developer Day ’23 
Introduction
Nick Dodd
Tridium EMEA

Presenter Notes
Presentation Notes





The NNews BBulletin

read() all about it…

Presenter Notes
Presentation Notes
We will begin proceedings with a short recap on what has happened in the world of the Niagara framework since the last London Forum, and then take a look at what is hot off the code press for 4.13




Since you’ve been gone

Last London Forum 2019

• 4 Niagara releases

• 4.9 ----> 4.12

• 4.13 just around the 
corner



Presenter Notes
Presentation Notes
So many features have been released in those 4 years, we don’t possibly have time to recap all of them, so lets just sample some of what has changed from a developers point of view




Headline API Additions
• 4.10 – Header Providers for Web Service

BIHttpHeaderProvider
BHttpHeaderProviders

• 4.11 – Alarm / History Archive Providers
BArchiveAlarmProvider
BArchiveHistoryProvider

• 4.12 – Http Client Module
HttpClientBuilder
IHttpClient
IHttpRequest / IHttpResponse

Presenter Notes
Presentation Notes
In 4.10 we added Http Header Providers to the web service. This not only further fortifies the Niagara station helping to prevent against cross site or cross frame scripting attacks, but it also gives a convenient place to add headers to the content security policy, so if your custom widget or view embeds graphics or assets from an external host, you can easily whitelist those resources safe in the knowledge that all other potentially malicious addresses will be blocked by your users browsers.

In 4.11 we added the Alarm and History archive providers. This means you can store the bulk of your data in an external rdb such as oracle or mysql, the most recent records cached in the local Niagara database for speed, while queries and charts can seamlessly work upon the full dataset in both datasources. You can extend these classes and define your own 3rd party data source to get the same functionality in your own modules.

Then 4.12 came along and so did the HttpClient module, which allows end users to add dynamic configurable http requests to their station at the wiresheet or within a driver. However you can also use these classes to further automate, and it may be simpler than writing and releasing a new driver each time you need to integrate to a restful api.



New Module Permissions

• 4.9 – ACCESS_CLASS
<parameter name="packages" value="sun.misc"/>

• 4.9 – MBEAN_PERMISSION
<parameter name=“type" value=“server"/> 

• 4.9 – THIRD_PARTY_PERMISSION
<parameter name=“className" value=“org.elasticsearch.SpecialPermission"/>

• 4.11 - KEYSTORE
<parameter name="keystores" value="userTrustStore,userKeyStore"/>
<parameter name="actions " value="read"/>

Presenter Notes
Presentation Notes
Several new module permissions have been added, allowing your module to request certain behaviours not available by default.

For example if you had problems with access class exceptions in the past, as the java security manager restricts access to certain packages in the jre such as the sun classes, you can now drop in a permission request in your module permissions xml and all is well

We have a similar permission for methods on java management beans, so for example you may be trying to use log4j logging or doing something with JMX.

From time to time, a 3rd party library that you uberjar may declare it’s own security permissions, and in the past you had no way to request these for your module, now you can with the 3rd party permission.

You may also wish to read or write to a Niagara keystore to perform your own certificate management or populate a socketfactory, and from 4.11 you can request permission to access those keystores.

If you have been in that unfortunate position in the past that you have uberjarred a 3rd party library for some cunning purpose, only to find that it demands a special permission which you do not have, well now you can add those too to your module. This does not include tridium or java permissions however, only 3rd party library permissions.

Finally, you are now able to request permissions to read or write to the various key or trust stores for performing your own certificate management.






UX Goodies

4.10 

Implicit Batching

UX Media

Spandrel Widgets

define([ 'bajaux/spandrel' ], function (spandrel) {

'use strict';

const HelloWorldWidget = spandrel(
<span style={{ color: 'blue', fontWeight: 'bold’ 

}}>
Hello world!

</span>
);

return HelloWorldWidget;
});

Presenter Notes
Presentation Notes
For the UX developerS, there have also been some very useful additions made, some of which you do not need to do anything to get the benefit.

For example from 4.10, when BajaScript performs multiple network calls in quick succession, those network calls will automatically batch into a single WebSocket message. 

`UxMedia`  was introduced as a new target media for your px views, resulting in the xml of the px view being rendered to html in the browser rather than in the station, taking a lot of burden off busy stations.

Also `spandrel` was a new API introduced to ease the process of constructing Widgets that contain nested child Widgets. It also allows the construction of `bajaux` widgets using JSX tags. It did not replace `bajaux` - it is an optional layer built on top of it., and as you can see here you can insert html declarations inside the javascript widget code, similar in a way to JSP for those familiar with that in the javaworld.






UX Goodies
4.11  
Undoable Commands
JQuery Update 3.5.1

new Command(
{ undoable: {

redo: () => console.log('implement redo logic here’),
undo: () => console.log('implement undo logic here’),
redoText: () => console.log('get the text displayed for a redo’),
undoText: () => console.log('get the text displayed for a undo’),
canRedo: () => console.log('determine if the redo can happen’),
canUndo: () => console.log('determine if the undo can happen’)

}
});

4.12
Spandrel Enhancements
New Events on Tables
Playground examples updated

Presenter Notes
Presentation Notes
In 4.11, jquery was updated to the latest at the time, and commands were enhanced to support undoable commands so that your action may be reversed by the user.

In 4.12 spandrel was further enhanced with event handlers and more, your tables were able to react to more events, and the playground examples in docdevloper were updated



News just in

4.13 Enhancements

Presenter Notes
Presentation Notes
So what do we have for you with Niagara 4.13?



JACE 9000

• Supported from 4.13

Presenter Notes
Presentation Notes
The next generation hardware, the JACE-9000 is available and supported from Niagara 4.13, double the RAM, double the storage, Ubuntu reaplacing QNX, quad core processor.



API Additions

• 4.13 – Email Auth Enhancements
• BEmailClientAuthenticator – Basic / Oauth

• 4.13 – Combined Certificate Alias / Password cleanup
• BCertificateAliasAndPassword Struct

Presenter Notes
Presentation Notes
In terms of api, in Niagara 4.13 the email code has received some feather duster treatment and there is now the ability to define custom authenticators for email accounts, with oauth recently added.

There has also been an overhaul of components that had separate certificate alias and password slots, not combined a new BStruct which allows you to define both and also choose whether to secure the cert using the global certificate password instead of a user defined one, which means the cert is still protected by a password, but only the system is able to retrieve it.



UX Goodies

4.13  baja.rpc() returns BSON for BComplex
4.13  BIWebResource / BCssResource

No longer need css declaration in every widget:    `css!nmodule/myModule/rc/myModule`

@NiagaraType
@NiagaraSingleton
public final class BMyModuleCssResource extends BCssResource
{ // slot-o-matic code excluded
public static final BMyModuleCssResource INSTANCE = new 

BMyModuleCssResource();

private BMyModuleCssResource()
{
super(BOrd.make("module://myModule/rc/myModule.css"));

}
} // reference this class in your BJsBuild constructor

Search ‘uiChangelog’ in docs for all of these and more

Presenter Notes
Presentation Notes

JavaScript resources, such as bajaux field editors, often depend on CSS rules to work properly. They can declare their own dependencies on CSS files using the `css!` RequireJs plugin, but it's easy to forget to do this. It's also redundant - usually a Niagara module will only have one CSS file, and manually adding `css!nmodule/myModule/rc/myModule` as a dependency to every field editor in a module is a chore.��`BCssResource`, an implementation of `BIWebResource`, solves this. It's now possible to declare a `BJsBuild` (which all your field editors must reference anyway) as having a dependency on a CSS file. This way, the framework will ensure that the proper CSS files are loaded whenever a `BIJavaScript` that uses that `BJsBuild` is instantiated in the browser.�




Gradle Upgrade

Gradle 4 ---> Gradle 7.x
Breaking (ish) Change – More on this later….

Build scripts:  Groovy  ---> Kotlin
Run New Module Wizard for example

jar { 

from('src/rc') 

{ 

include 'foo.png' 

include '**/*.px'

exclude 'test.jpg' 

} 

}

tasks.named<Jar>("jar") { 

from("src/rc") { 

include("foo.png") 

include("**/*.px") 

exclude("test.jpg") 

}

}

Presenter Notes
Presentation Notes
Starting with Niagara 4.13, the build environment for building your Niagara 4 modules has significantly changed, including a major Gradle update from Gradle 4 to �Gradle 7. We will talk in detail on that later

These changes have been made with future stability in mind.

With this change also comes with the conversion from the groovy syntax of old you see on the left, to using kotlin inline with gradle which has also made this step. The new module wizard will now generate your build scripts in Kotlin. Kotlin gives nicer IDE integration with code completion and syntax checking, it is a strongly typed language and less of a scripting language like groovy.





4.13 Parallel Builds

Build Modules in parallel

Use --parallel gradle option

C:\Niagara\r413>gradlew jar --parallel
<==-----------> 20% EXECUTING [38s]
> :alarm-rt:compileJava
> :js-ux:compileJava
> :bajaux-rt:compileJava
> :history-rt:compileJava
> :program-rt:compileJava
> :dashboard-rt:compileJava
> :axvelocity-rt:compileJava
> :ffmpeg-rt:compileJava
> :ldap-rt:compileJava
> :baseRtsp-rt:compileJava
> :topsecretModule-rt:compileJava
> :jsonToolkit-rt:jar
> :kitTest-rt:compileJava
> :lonAlya-rt:jar
> :oauth2-rt:compileJava

Presenter Notes
Presentation Notes
All plugins used to build Niagara modules are now parallel-safe. This allows you to run Gradle with the `--parallel` flag, which can result in a significantly faster�build, especially for larger projects. If you have projects with multiple modules, this could be a real time saver on your CI  and local dev builds.




4.13  JaCoCo code coverage

Unit test coverage reporting

New gradle targets

Report appears in build/reports

gradlew :my-module-rt:niagaraTest
gradlew :my-module-rt:jacocoNiagaraTestReport

Presenter Notes
Presentation Notes
You could previous enable jacoco test coverage reporting by adding some extra gradle code to you modules, however from 4.13 it is now built it.
�Once you have set up a new environment using the upgrade guide, you can run the following commands to test your module with coverage and generate an HTML report.




Niagara Data Service (NDS)

• Part of Niagara Cloud Suite

• API for 3rd parties
• History / Model data
• Predefined JSON payloads
• Access via cloud - no need for a gateway

• See Craigs Talk later this afternoon

Presenter Notes
Presentation Notes
Another major feature for developers to be aware of is the Niagara Data Service which is part of the Niagara cloud suite

This allows developer partners to write external apps which consume JSON payloads rich with History data, contextualized with tag metadata over a REST API.

The access to the data is via the cloud, meaning no need for a specific gateway, and less complaints from IT

Much more detail on this at later from Craig Gemmill.



Breaking news *

4.13 Gradle Changes

* well, more like deprecating news, breaking in the future, one day…

Presenter Notes
Presentation Notes
Now it’s time to review those breaking changes we mentioned earlier. We will not do a whistle stop tour of the things which have changed with gradle in 4.13, and the upgrade to gradle 7. while previous increments have been rather minor, there are quite a few changes required. We made the decision that as the gradle forced our hand with breaking changes of their own, we would bundle in several of our own breaking changes to our gradle plugins at the same time, so they are all in 1 hit instead of big changes over several versions in a row.

Now we have caveated breaking news here, this is because technically you can continue to use your existing gradle against 4.13. However that may change in subsequent versions after 4.13.



Gradle 7 changes (4.13)
• Root file changes – now .kts

• environment.gradle ----> gradle.properties

• vendor.gradle ---->  vendor extension in build.gradle.kts

Presenter Notes
Presentation Notes
We will quickly summarize the main points of change.

The `environment.gradle` file used to configure the location of Niagara for building against has been removed. Its functionality has been replaced with Gradle properties��The `vendor.gradle` file used to configure vendor-specific information has been replaced with a `vendor` extension in the root `build.gradle.kts` file�




Gradle 7 changes
niagaraModule ----> moduleManifest

moduleManifest {
moduleName.set("myModule")
runtimeProfile.set(rt)

}

niagaraModule {  
moduleName = "myModule"
preferredSymbol = "mm"
runtimeProfile = "rt"
modulePart {      
name = "myModule-wb"
runtimeProfile = "wb"  

}  
modulePart {      
name = "myModule-ux"
runtimeProfile = "ux"

}
}

Presenter Notes
Presentation Notes
Previously, your rt module would typically declared a niagaraModule extension declaring all the different module parts
This is now much simplified with a simple moduleManifest section in each module part




New niagara-module.xml file

<?xml version="1.0" encoding="UTF-8"?>
<niagara-module moduleName="myModule413" preferredSymbol="mm" 
runtimeProfiles="rt,ux,wb"/>

Presenter Notes
Presentation Notes
There is instead now a new niagara-module.xml where you define the shared metadata that must be consistent between module parts, such as the preferred symbol



dependencies { 

compile 'Tridium:alarm-rt:4.10'

compile 'Skynet:terminator-rt:1000'

compile 'Tridium:bcstd/bcprov-jdk15on-1.68'

compile 'Tridium:nre:4.10'

uberjar 'com.example:example:3.1415' 

niagaraModuleTestCompile 'Tridium:test-se:4.10' 

}

Dependency Configuration Names
• compile ---> api
• bin/ext dependencies ---> nre
• niagaraModuleTestCompile ---> moduleTestImplementation

dependencies { 

api("Tridium:alarm-rt")

api("Skynet:terminator-rt")

nre("org.bouncycastle:bcprov-jdk18on")

nre("Tridium:nre")

uberjar("com.example:example:3.1415")

moduleTestImplementation("Tridium:test-se")

}

Presenter Notes
Presentation Notes
Gradle 7 has changed a lot of the dependency configuration names, most prominent is that the `compile` and `runtime` configurations, have been replaced it with either ‘api’ or ‘implementation’. The difference between API and implementation is whether you need to expose transitive dependencies, and in terms of migration, just replace compile with API in your builds. The rename is true for derived configurations also (so `niagaraModuleTestCompile` becomes `niagaraModuleTestRuntime`)

Note that depending on external dependencies has not changed as the Niagara build environment requires all external dependencies to be declared as `uberjar`or `testUberjar`.��If you have previously used `compile` or `runtime` to pull in dependencies that are provided by the Niagara Runtime Environment in `!bin/ext`, such as BouncyCastle, you�should replace those with `nre` or `testNre`, respectively. This includes nre itself!




Resource Declaration
Another simple syntax shuffle

tasks.named<Jar>("jar") { 

from("src/rc") { 

include("foo.png")

include("**/*.px")

exclude("test.jpg")

}

}

jar { 

from('src/rc') { 

include 'foo.png' 

include '**/*.px' 

exclude 'test.jpg' 

}

}

module-rt.gradle module-rt.gradle.kts

Presenter Notes
Presentation Notes
If you have an existing block to declare resource inclusion or exclusion, it is just a syntax correction to kotlin.



4.13  Signing Alias

• Define signing profile and alias in build.gradle.kts

signingServices {
// Disable the use of the default profile; 
signingProfileFactory {
allowDefaultProfile.set(false)

}
}

niagaraSigning {
aliases.set(listOf("MyCert"))
signingProfileFile.set(project.layout.projectDirectory.file("my_profile.xml"))

}

Presenter Notes
Presentation Notes
Finally, you can specify to the signing plugin where to find your signing profile and which alias to use for the build, you of course may have different certs for qa and production.



Where do I begin?

• docDeveloper - Search for ‘Upgrading Build’
• Full migration guide
• Manual file by file upgrade documented

• Cheaters method (recommended)
• Run New Module Wizard
• Copy across src, srcTest, resources
• Fix dependencies
• Fix resources
• Fix module signing

Presenter Notes
Presentation Notes
You may be thinking this sounds like a lot of work. Do not worry, all of what I have just referred to is documented in full with a migration guide in docDeveloper, but actually, rather than doing a file by file manual fix we recommend a simpler method.

Just run the new module wizard from wb and enter the same parameters as if recreating your module again from scratch, copy across all the source test code and resources in the same structure, then fix your dependency names, copy across your resource block fixing the syntax as you go, reapply the module signing, and you should be good to go.



When do I begin?

• Your existing gradle scripts will work for now
• All the same gradle plugins are still there
• They will go away one day, so act soon to 

avoid future disappointment!

• The new Gradle scripts will build against 4.10 
(LTS)+
• gradle.properties

• niagara_home
• gradlePluginHome
• nodeHome

Presenter Notes
Presentation Notes
You may also be wondering when I need to do this?

Well, I said the change was breaking-ish. That is because technically, all the old niagara gradle plugins from the old build are still there and your old scripts will continue to operate, but 4.13 is the last version where we can definitely say that is the case, so upgrade now to avoid looking like this guy.

Also there is an element of backward compatibility when you are on the new gradle, in that the new gradle.properties file, where you now define your nigaara home, you can also override gradlePluginHome and nodeHome for ux builds so that you can use the new gradle against older versions of niagara back to our LTS version which is 4.10.



A genuine 4.13 breaking change
Sys.getNiagaraHome()  /  Sys.getBajaHome()

javax.baja.nre.util.SystemFiles

getNiagaraHomeDirectory()
getModulesDirectory()
getSystemProperties()
more….

Presenter Notes
Presentation Notes
This however is one definite breaking change in 4.13, there has been a little tidy up in methods which get your paths to Niagara folders. These 2 methods have been marked deprecated for a while, and from 4.13 you will need to use the new SystemFiles class for getting the Niagara home folder path.



Module Signing Update

• June 1st change to CAB Guidance

Certificate authorities and issuers shall not issue or sign code-signing certificates 
unless the private key can be protected via a hardware security module (HSM)

Signing profiles do not currently support certs stored in a HSM

• What is the impact?
Building a module with a Signing Cert obtained after June 1st may fail

• Mitigation
Obtain a new max length Signing Certificate before June 1st
Tridium are working on a solution for our gradle builds

Presenter Notes
Presentation Notes
While we are on the topic of signing, it is important to remind incase you did not receive our recent technical bulletin, that the CA Browser Forum have recommended that issues of code signing certificates, or ca’s who sign certificates, should not do so unless the private key is to be stored in a Hardware security module. They have also recommended against 3 year certificate durations.

Now this is a problem as the gradle plugin which signs Niagara modules does not currently have support for this, it assumes a certificate which is accessible on disk on the build host.

Who will be impacted. Well anyone who currently builds their own custom Niagara modules and signs them with a code signing certificate they have obtained from a CA such as verisign or thwaite. Nothing will change overnight on June 1st, however when you renew that code signing cert after June 1st, they may only deliver your certificate on a HSM dongle protected by some proprietary means to access that certificate, which our Niagara build cannot currently utilize.

Our advice is to obtain a new certificate before June 1st if possible, and in the meantime, Tridium are working on a solution.



Today

• 4 Talks
• 30 minute break for tea (2.45 ish)
• 3 Talks
• Community Developer – VayanData
• Ask the Experts Q & A
• Finish 5.30

Welcome Drinks Reception (and canapés) 7:00 PM

Presenter Notes
Presentation Notes
So what do we have for you today. Some great talks from Tridium developers coming up, then we break for tea around 2.45, we have 3 more talks, then a really great presentation by developer partners VayanData on their CI/DC pipeline, many thanks to them, and any remaining time up to 5.30 we will answer questions.

We aim to finish at 5.30 so you have time to rest and check-in to hotels before the drinks welcome reception begins at 7.



Q & A Session

Submit questions to: supportemea@tridium.com
Subject: DEV DAY

Presenter Notes
Presentation Notes
We will accept 2 or 3 quick questions after each presentation, but as we have a lot to get through today, if you have particular questions come to mind during the day which are unrelated to the current topic, please email this address with this subject prefix, and at the end of the day I will put some of those questions to our assembled panel of Niagara developers.




	Slide Number 1
	Developer Day ’23 Introduction
	Slide Number 3
	Since you’ve been gone
	Slide Number 5
	Headline API Additions
	New Module Permissions
	UX Goodies
	UX Goodies
	Slide Number 10
	JACE 9000
	API Additions
	UX Goodies
	Gradle Upgrade
	4.13 Parallel Builds
	4.13  JaCoCo code coverage
	Niagara Data Service (NDS)
	Slide Number 19
	Gradle 7 changes (4.13)
	Gradle 7 changes
	New niagara-module.xml file
	Dependency Configuration Names
	Resource Declaration
	4.13  Signing Alias
	Where do I begin?
	When do I begin?
	A genuine 4.13 breaking change
	Module Signing Update
	Today
	Q & A Session
	Slide Number 32

