


Niagara Data + the Cloud

A Choice of Capabilities

Presenter Notes
Presentation Notes
We have six different speaks for this session, covering a range of topics regarding Niagara and it’s links with the cloud.

We have a lot of content for you to digest so we don’t plan on having a Q&A between speakers, if we do have time at the end we will try to answer any questions you may have, if we don’t we will hang back so grab us afterwards.

First up w





History Archive 
Provider
Tony Hardwick
Tridium

Presenter Notes
Presentation Notes
Introduce what is happening here




Terminology

• Example Relational Databases:
• MySQL
• SQL Server
• Oracle DB

• History Provider



Niagara History Database

• Local storage limitations
• File size limits
• Total capacity

• Proprietary

Presenter Notes
Presentation Notes
The built-in history databases in Niagara are designed for speed and efficiency in the framework, but this brings with it some downsides:
CLICK
We are restricted in size by the local storage media
CLICK
It’s proprietary. Limited to Niagara’s own visualisation and Analysis tools, or tools built through the API.  Which are all very good.
So how does a relational database improve on this?




Relational database benefits

• Space!
• More options:

• Backup
• Data management
• Presentation
• Analysis

• Can be anywhere

Presenter Notes
Presentation Notes
Much like combining two single beds into a single bunk, you can make use of CLICK
More space, 
extendable space, 
space you can buy when you need it
CLICK
Access to more options for robust backups; looking at, managing, and analysing your histories and most important to this presentation…
CLICK
That database can exist anywhere you have IP connectivity to.  That could be a data server in the same building, it could be something cloud-based.




You may remember me from such films…

• RDBMS Introduced 
in AX

• Primarily export

• Niagara can now 
access that data

Presenter Notes
Presentation Notes
isn’t this old?
Have always been able to export
Use other system for accessing historical data
AHP allows for 



RDBMS Network

Local

Relational DB

• Local storage is used 
as normal

• Histories Exported to 
RDB as configured in 
the driver

Presenter Notes
Presentation Notes
Business as usual for Rdbms
Standard Niagara history export
Operates like any other driver for histories




Archive history provider

Local

Relational DB

• Local store is loaded 
for recent records

• RDB accessed 
transparently if more 
records are required

Presenter Notes
Presentation Notes
You access history space
Gets local
Or grabs from RDB




What do I need?

• A supported relational database, e.g.:
• MySQL
• SQL Server
• Oracle DB

• Rdbms module
• Rdbms<Database> module
• Licensed

Presenter Notes
Presentation Notes
You need a:
Database
Modules
License



Configuration

Example installation



General setup

• RdbmsNetwork
• Database device

• History service



Add your database

Add RdbmsNetwork
Add Database

Choose your palette



Configure Database connection



Set up provider



Summary





Cloud/API Sourced 
Data Ingress 
Curtis McKerlie
Tridium

Presenter Notes
Presentation Notes
My name is……

I’m going to be talking about bring data into Niagara using the HttpClient Driver

This has been available from 4.11 in this region and available globally from 4.12





Presenter Notes
Presentation Notes
I’m going to concentrate on bring data into Niagara during this presentation












Presenter Notes
Presentation Notes
Rodeo Car Lot lighting
Nordpool energy forcasting






Presenter Notes
Presentation Notes
RTFM, 

I know as engineers we don’t like to read manuals……..

Without docs it will almost impossible to integrate



Presenter Notes
Presentation Notes
With anything web based, there will always be some form of authorisation required

We will use a HttpClient component for this task 








Presenter Notes
Presentation Notes
For the sensor points I am going to use the HttpClient Network Driver as there are multiple similar GET requests for each sensor, this will be more efficient than having a single component for each sensor.























Presenter Notes
Presentation Notes
To authorise each child device, or sensor connection, under the HttpClientNetwork I am going to link-mark and connect to a slot under the Authenticator container. This will allow each point or sensor to use the same credentials from the parent folder, again better efficiency.




































Presenter Notes
Presentation Notes
SMA is to ensure your system is up to date and secure

From Demo, 1 point used for authentication, 2 points per wall sensor – total 11 Global point count – BUT this has given us minimum 42 Niagara points






MQTT – Making 
Connections
Nick Dodd
Tridium



The Natural Order

1. Anything that is in the world when you’re born is normal and ordinary and is just a 
natural part of the way the world works.

2. Anything that’s invented between when you’re fifteen and thirty-five is new and 
exciting and revolutionary and you can probably get a career in it.

3. Anything invented after you’re thirty-five is against the natural order of things.

Douglas Adams - How to Stop Worrying and Learn to Love the Internet

Presenter Notes
Presentation Notes
I am here to talk to you about MQTT today, but before we get to that, I wanted to reflect very briefly on this great quote. This is from a great prescient article written in 1999 by Douglas Adams of Hitchikers Guide fame. Anything invented after you’re thirty-five is against the natural order of things. No matter what age we are, things like chat gpt might be tempting us into this line of thought. But what Adams was really saying in this article was not to think like this, that this was the thinking of the time when early naysayers claimed the internet would fizzle out, while Adams encourages us to embrace this new connectivity and what it can provide.




The New Natural Order?

ChatGPT for some.… Transition from traditional Client-
Server protocols, I/O, Connected 

Bus, to….

HTTP / AMQP / 6LoWPAN / MQTT / 
Mesh Topologies / Cloud / 
Certificate Management

Presenter Notes
Presentation Notes
So a contrived segway back to our topic, for a lot of people in the BMS industry the natural order for decades has been familiar client server based protocols and buses of wired together devices.

In the last decade that has been rapidly shifting away from protocol specific client server comms, in favour of mesh based IP devices containing API’s to allow any client to consume that data, to make that data more easily externalizable to the cloud, and with this has come a fair amount of those dreaded words, certificate management.




MQTT

MQ Telemetry Transport

Presenter Notes
Presentation Notes
So lets take a look at MQTT



Knowledge Refresh

Central Broker

Clients (Client ID)

Message Queues  (Topics)

Publish / Subscribe 

Message payload / JSON

Retained messages

Quality of Service levels 0 - 2

/lobby/temp /lobby/occupants

LobbyApp

{ “v”: 22.2, “unit”: “°C” }
Publish to /lobby/temp

22.2

Subscribe to /lobby/#

JACE9

Presenter Notes
Presentation Notes
MQTT has been around 23 years now, so it is really the old order. You may have used MQTT even if you don’t realise it –Facebook messenger began using it so send your messages to each other in 2011

‘MQTT overtook HTTP in 2018 as the transport protocol of choice for the Internet of Things’, reports Stanford-Clark – its co-creator. I could not find a source for that but sure he is unbiased.’

To recap how the protocol works, you have a central broker
You have multiple clients, any number, 
Messages are sent to topics which are just names with slashes like the address of a file on your filesystem.
Clients can both publish to and subscribe to topics.
Messages can be anything you like, often a JSON string is the most suitable
The broker can store messages while a client is offline to ensure they never miss a message.
Just like the regular post, parcels can go missing sometimes, and so there are various quality of service levels, 0 being fire and forget, 1 being my message must be delivered at least once, 2 being deliver my message only once.





Why this is a good thing

10001101
11

Small code 
footprint

Highly scalable Clients never
talk directly

No message 
protocol

Presenter Notes
Presentation Notes
The reasons why all this is good for IoT:
small code footprint
bandwidth-efficient, highly scalable 
clients never talk directly, the broker can be anywhere, the clients do not need to know addresses of where the other clients are. device to device or cloud communication
No message protocol – the payload can be anything, mqtt does not care nor tell you what to send and in which format, it can be json, it can be a single number, it could be xml




Use Case 1 – The Enthusiast

Homebrew HVAC anyone?

• Cat Feeding App https://github.com/lance36/catFeeder

• LiDAR Mailbox Monitor 
https://hackaday.com/2022/06/06/using-a-lidar-sensor-to-monitor-
your-mailbox

• BarkBack Automatic Dog Sushing
https://hackaday.com/2018/01/05/bark-back-iot-pet-monitor

Presenter Notes
Presentation Notes
So who uses MQTT?

Well first of there are all the homebrew projects you can find online.
Maybe you want to turn the central heating down from your phone when their partner isn’t looking.
Some people have made apps to remotely feed their cats
How about using LIDAR to detect when a letter is posted in your mailbox?
Our favourite is Marley the dog, whose owner coded some python to remotely shush her dog when a noise threshold was exceeded




Needs

• Sensors, Arduinos, Raspberry Pi’s, Alexa, Soldering Iron

• Broker / IoT platform – NodeRed, Home Assistant, Dozens more

• Possibly: Coding Skills

Presenter Notes
Presentation Notes
The enthusiast project usually needs one of these things you see on screen, often an mqtt broker, or IoT platform such as Nodered to join things together

But chances are you will probably also need coding skills …..or chatgpt nowadays





Use Case 2 – The IoT Professional

Seafloor Systems

• Hydrographic Robot Boats

• Survey Seabed

• Crew = 0. Remotely operated

• Deploy updates to robots via AWS MQTT

https://aws.amazon.com/solutions

Presenter Notes
Presentation Notes
Then there are the IoT superstars who do amazing things on the big platforms like AWS.
Seafloor systems make an automated fleet of crewless robots that use sonar to map the seabed, looking for leaks in pipes, shipwrecks etc
They use AWS IoT to deploy configurations remotely out to the robots via MQTT.




Needs
• Sonar, thrusters, lamps, batteries

• Roboticists 

• Soldering Irons

• Highly skilled engineers, roboticists, development team

Presenter Notes
Presentation Notes
This team needed an awful lot more sophisticated kit, experts in robotics and advanced software engineering skills to achieve what they accomplished.




Use Case 3 – The BMS Engineer

Push Point / History / 
Alarm Data to a broker

Analytic Insights - Splunk
Archive – Amazon S3
Dashboards / Wall displays – Grafana
Performance Monitoring
Predictive Maintenance
SMS Events - Twilio

Bring data into the 
station

Sensor Telemetry – EnOcean IoT
Parking space data

Smart Meters
People Counters

Remote command and control

Presenter Notes
Presentation Notes
But what about the BMS Engineer? I probably don’t need to tell you that there are a ton of platforms and devices our there now containing either an mqtt broker or a client, which unlocks all sorts of use cases for buildings

I won’t go into all of these now but you get the idea, once you publish data from your controller to cloud, there are tools to help people perform analytics, predictive maintenance, trigger events in upstream systems. On the flip side, there are many gateways or sensors out on the market which have embedded mqtt, and can supply all manner of data on systems or people within a space.




Needs
• Niagara Data Service + Developers

or…
• A Niagara Station
• Workbench / Browser
• The MQTT / JSONToolkit modules

Presenter Notes
Presentation Notes
Now obviously a lot of the upstream solutions will require a lot of cloud specific skills and again, developers. But we think you can achieve quite a bit with a Niagara station, and the mqtt driver, and some of the functionality in the JSONToolkit module.
In this way you can push some data out into the cloud using the wiresheet and property sheets alone, and let the developers deal with everything that happens up in the cloud platform, saving on potentially expensive development on the Niagara platform itself.




Connecting to the broker

Taking the first step

“It's the job that's never started as 
takes longest to finish.”

JRR Tolkien

Presenter Notes
Presentation Notes
So every journey begins with a step, and in this case that is connecting to a broker.



Add MQTT Network…
Add MQTT Device…

Now I need to authenticate with the broker.

Taking the first step

Presenter Notes
Presentation Notes
Taking this first step can sometimes be complicated and a sticking point, as there are several different ways to authenticate with various mqtt brokers, so today I will demonstrate how simple it can be, as we have made some improvements.





Different ways to authenticate

Anonymous
Testing Only!

Username/Password 
Credentials

Certificates Cloud 
Specific

Presenter Notes
Presentation Notes
There are 3 main methods you can use authenticate with MQTT

Anonymous – just an open door – anyone can just publish and subscribe, please only use this for testing
Username / Password which everyone is familiar with
Certificates. Yes everyone loves them. This is simply supplying a certificate as your credential that proves to the broker who you are.

Then cloud brokers might have specific requirements about special tokens you need to set as the password, but essentially it all boils down to those 3 methods.



They say it is the first step that costs the effort. I do not find it so. 




Anonymous

For testing

https://www.hivemq.com/public-mqtt-broker/

Presenter Notes
Presentation Notes
We won’t linger on anonymous connections too long, this is strictly just for trying things out or sanity testing.
There is a public hive mqtt broker which can be connected to.
For this we use the default mqtt device which has a generic mqtt authenticator, that means not specific to a particular cloud, and just pick connection type anonymous



User Credentials

HiveMQ / Mosquitto / NanoMQ / VerneMQ / CloudMQTT

Credentials always sent over SSL

Presenter Notes
Presentation Notes
More familiar territory and again not worthy of much time here
You might be connecting to a privately hosted hive or mosquito broker on premise or a cloud hosted mqtt broker such as Hive cloud or cloudmqtt, or some other thing with MQ in the name.
That broker might be configured to accept username password credentials, once again the default device may be used, and just use the default setting of user login over ssl
We will not allow credentials to be sent without SSL






Accept the Brokers certificate

Server certificate may not be automatically trusted.

Import the CA certificate or Approve in Allowed Hosts

Presenter Notes
Presentation Notes
However! There is often one additional step which can catch people out. Because you are using SSL, the broker will present a server certificate which may not be trusted by Niagara, so if you get an error in your mqtt device talking about trust anchors or ssl, just hop on over to your cert management service for the platform and approve the certificate



Brief segue

SSL / Certificates

Presenter Notes
Presentation Notes
So queued up next is certificate auth, and before we delve too deep into this, time for another quick knowledge refresh for this in the room who baulk at the term



Knowledge Refresh 2: X509

Public
Private

Certificates have a public and private key

Hello… …4f7a22a!5fc… …Hello

What one key encrypts, only the other can decrypt

Presenter Notes
Presentation Notes
SSL is based on public/private key encryption and people often get confused about what this all means.

Essentially, certificates have 1 public and 1 private key which are intrinsically linked with maths magic, which means that if one key encrypts a message, only the other key is able to descramble the message.



Knowledge Refresh 2: X509

A public certificate typically contains some identifying fields 
+ public key. Private key is kept secret

CN=myHiveCert

O=Tridium

Presenter Notes
Presentation Notes
A certificate really is just a bunch of values which detail who owns a certificate and for what purpose, combined with the public key, whilst that private key remains locked away, as if both these keys are known to anyone, they can pretend to be you.



Knowledge Refresh 2: X509

SSL is an exchange of certificates (handshake), establishing trust

Client Server

Encrypt with the others public key, then decrypt with their 
private key

Secret message…… …4f7a22a!5fc…

Presenter Notes
Presentation Notes
Now SSL comms essentially starts with a handshake, where each party gains mutual trust in the other by proving to each other they possess their private key, and this is as simple as encoding a secret message using the others public key, and then asking them to turn that back into the original secret using their private key, hence proving they own it.



Knowledge Refresh 2: X509

A Certificate Authority (CA) can sign your certificate, proving you 
own that certificate 

Self Signed

CA Signed

Presenter Notes
Presentation Notes
Now just to make things even more secure, it is possible to further prove you are trustworthy, by sending your public certificate to a Certificate Authority such as Verisign or Thwaite, and after they have checked who you are and that you are not pretending to be someone else, they will sign your certificate with their private key, leaving a signature anyone can check with the CA’s well known public key. Think blue tick on twitter, erm, actually no that’s all changed hasn’t it?



Client Certificate Auth

Coming in 4.14, Certificate is your credential (transport layer)

Use the Certificate Manager to generate a new certificate

Or Import Client Certificate and Private Key 

Presenter Notes
Presentation Notes
The point of all this was to announce that several versions too late, apologies, we will finally have a generic certificate mqtt authenticator in the driver. This is just like we saw a couple of slides back, the certificate is your credential at the transport layer.

Either use our cert management tool to generate your client certificate, or import one you have been given for this purpose to the key store along with the all important private key. Ask for a PEM file.



Broker setup

If self signed, broker will need to trust your certificate in advance

If CA signed, broker just needs to trust the CA

Presenter Notes
Presentation Notes
Now if you are using self signed certificates, so not signed by a CA, then your broker may need to import your client certificate into it’s own trust store.

However if it is CA signed, the broker just needs to trust that CA which makes things simpler.



Client Certificate Auth

You may import the Servers Certificate or CA into Trust store

Presenter Notes
Presentation Notes
You may also import the servers certificate, or the CA that signed their certificate into the Niagara trust store so that we accept their side of the handshake



Client Certificate Auth

Select alias in default authenticator

May use Anonymous Over SSL

Or combine this with username/password (app layer)

Presenter Notes
Presentation Notes
Now in the property sheet, against using the default authenticator, you need to set use tls client auth to true, and pick the certificate you have generated or imported.
You may combine this with username password credentials, or use anonymous over ssl.



The Cloud

Azure

Presenter Notes
Presentation Notes
So now we get to the cloud specific authenticators. It may be that your project needs to talk to cloud based assets in one of the 3 big cloud vendors of which we support all 3 in the driver, however we will skip google today as the situation there is unclear.



Azure – SAS Tokens (since 4.12)
Password replaced with generated token

Securely stored encrypted in keyring file

Once first token generated, renews automatically every day

Presenter Notes
Presentation Notes
In Microsoft Azure you can use certificates to connect but a far simpler approach is to use Shared Access Tokens as the password when connecting. The username is a special string specific to your virtual device in the cloud, and the password is this special token.

Our authenticator has the ability to generate these tokens, and then once connected, to automatically generate a new one on a rolling basis.

Can we onboard a device in 1 minute?



On in 60 seconds?

60
secs

Presenter Notes
Presentation Notes
We sure can.

In Azure IoT hub we will add a brand new device, just give it a name, and leave connection type as symmetric key and save.

Then we just need to copy the primary or secondary connection string from the new device

Then hop on over to Niagara where we can add an azure device to our mqtt driver. Notice there are a lot of different values to add here such as the address and various parameters for generating the token.

We don’t need to populate any of that, we have what we need on the clipboard, just run the action to setup for connection string, paste, and we are connected to the cloud.

This token will autorenew every hour by default.



Takeaway points

Super Fast Setup
Secure Credential 

Storage
Auto Renewal
(walk away)

Presenter Notes
Presentation Notes
So this was good because all we had to do was 1 Copy, 1 Action, 1 Paste

The string and token are securely stored and encrypted.

But most of all, you don’t need to worry about expiry, just walk away and let the device auto renew.




The Cloud

AWS

Presenter Notes
Presentation Notes
Time to turn our attention to AWS, who only allow connections with certificates.



AWS - Certificates
• Create ‘Thing’
• Create policy
• Register CA 
• Verify CA
• Generate Device Cert
• Sign with CA
• Upload signed cert
• Activate
• Import Certs to Niagara via 

workbench
• Repeat in x years

Presenter Notes
Presentation Notes
The process of connecting to AWS in the past has been, to be fair, a little gruelling and time consuming.

You need to create a ‘Thing’ in AWS, a policy with access rules, you register your CA certificate which requires generation of a verification certificate, then you need to generate each device certificate per mqtt device, sign with the CA, upload and activate all the certificates before manually making PEM files and importing into Niagara.

Then you need to do a lot of it again when the certificates expire.



A lot of work
• 20 steps to onboard 

1st device *

• ~10 per additional 
device

• Then the same pain 
again when they 
expire 

* Assuming use of CA Certificates 

Presenter Notes
Presentation Notes
This is quite a bit of complex work, especially if you are setting up connections from controllers and have to do this multiple times, and has been a problem for a lot of people and has very possibly led to some peripheral biting.



The Cloud

4.13 AWS – Zero Touch Commissioning

Presenter Notes
Presentation Notes
So I am proud to say that things have been made a lot simpler in 4.13



The Goal

“To be able to onboard a fleet of controllers to AWS with as 
close to ‘zero touch’ as possible on the controllers“

A 4.13 Solution in 3 parts

Presenter Notes
Presentation Notes
We set the aim to be able to onboard a fleet of controllers to AWS with as little to do as possible on each JACE



1- New AWS Authenticator / Service
1. Define credential and special JITP 

Role in AWS

2. Register a trusted CA and policy 
associated with special role.

3. New MQTT authenticator 
attempts connection with signed 
cert, fails while assets are auto 
generated

4. 2nd attempt succeeds

Presenter Notes
Presentation Notes
Firstly, we added a new AWS authenticator which uses something called Just In Time Provisioning.

This means that we create a special role in AWS, then use a new service to register a CA certificate connected to that role.

The authenticator will attempt to connect with a cert signed by that CA, it will be denined, then AWS will quickly commission a policy and thing for you, then let you connect the 2nd time.



2 – The Signing Service
• Components register and 

request signed certificates

• Supervisor signs with CA cert

• Certificates auto renewed with 
service

• BACnet-SC / Fox / Web to use 
this in later versions

Supervisor

Onboard     Request

Sign

Auto-renew

Presenter Notes
Presentation Notes
We have added a new service called the signing service, which will accept requests from components on your Niagara network to sign certificates.

That way a component can generate it’s own certificate, onboard with the signing service on a supervisor, and get it automatically signed and renewed.

We have initially just rolled this our for MQTT, but will be coming soon to make BACnet-SC, fox and web certificates more automated.



3 – New Provisioning Job

• Install the new MQTT 
device on each station

• Auto onboard with 
signing service

• Devices then auto 
connect to AWS

Presenter Notes
Presentation Notes
Finally, we created a new Niagara provisioning job to poke a new mqtt device onto each controller.



A fleet in 5 minutes?

• 3 blank stations on 3 platforms

• Empty supervisor except 3 
connections to stations

• No certificates or Things setup 
in AWS instance, just the special 
role

Presenter Notes
Presentation Notes
So can we get 3 blank stations running on different platforms onto AWS in less than 5 minutes?

We have an empty supervisor, 3 blank stations, and nothing setup in AWS except our special role.



1 Register CA Certificate



2 Setup Signing Profile – 3:40 remaining



3 Provision MQTT Devices – 2:40 remaining



Done

00:20



Takeaway points

All config 
performed from 

supervisor

BACnet-SC and 
others coming 

soon
Auto Renewal
(walk away)

Presenter Notes
Presentation Notes
So to recap, we connected multiple controllers to AWS without logging into those controllers once to do so, we did all the setup from the supervisor

Again, auto renew so this is a one time job

Other things in Niagara which use certificates will utilize the signing service in the future.



Thank you

Presenter Notes
Presentation Notes
So I hope this was useful in seeing that taking the first step and making connections with mqtt can be simple and worth a try if you have not already, and is not against the natural order of things. Unlike chat gpt.





JSON Toolkit
Preview
Jason Woollard
Tridium

Presenter Notes
Presentation Notes
Hi – Good Afternoon

This is a preview of the json toolkit – lots of training materials are available elsewhere, so this is an elevator pitch, although beat the guy on hvac talk who said this module let’s you get your JSON… ON





In the unlikely event you get bored - feel free to construct jokes using the words on this slide for Q&A – If it’s decent, and we haven’t heard it before, I might arrange a prize of some kind.

Unless - you’re the guy off the HVAC talk website who said this stuff let’s you get your JSON … ON … we can’t compete with that elevator pitch.

23 in 15?

16:30 to 17:00





Where is JSON used?

UI / Charting / JavaScript

REST
HTTP
Web Service API’s

Storage – NoSQL IoT Device API’s

Presenter Notes
Presentation Notes

The JSON Toolkit is like the freestyle / DIY part of our cloud presentations… this works with MQTT and HTTP, but it’s not limited to cloud applications you should be getting good value by attending! 

Other use cases include charting libraries, control of IoT devices or even databases. It can basically marshall almost all of Niagara’s object model to or from JSON – as you need for your project

15 minute overview - we’ve got a long way to go, and a short time to get there – so lets cut to the chase






The JSON Toolkit is like the freestyle / DIY / swiss army knife  part of these cloud offering presentations… technically it’s not limited to use with cloud applications.. But please don’t complain about misrepresentation, I think sneaking in more use cases is just better value - and hopefully more inspiration to explore further. 

Obviously – having seen the last two presentations - it does lend itself _rather_ well to supporting HTTP or MQTT based applications… the same happens to be true for charting libraries, direct control of IoT devices or archiving to databases – 

The JSON toolkit basically marshals data to or from  Niagara and JSON meaning a lot of APIs become fair game for our integrators.

The length of this session means it won’t be a deep dive – good news for all of us – but there is decent documentation, Tridium University training or free content on YouTube you can use rather than trying to remember specifics verbatim…. The goal is to raise awareness rather than being comprehensively educational… oh and there are examples in the jsonToolkit palette too.





What is JSON?

• “Key” : Value pairs
• Key = String 
• Value = Numeric / Boolean / String

• Objects { }
• Contain Key Value pairs

• Arrays [ ]
• Contain lists of Values

{ 
"T-800": {
"manufacturer": "Cyberdyne",
"model": 101,
"cpu": "neural",
"self-aware": true
"requires": [

"clothes", "boots", "motorcycle" 
],

},
"T-1000": { … }
} 

Presenter Notes
Presentation Notes

JSON, or JavaScript object notation, is a very simple data format which allows nesting of either comma-separated arrays, denoted by square brackets…

Or Objects denoted by curly brackets which contain key value pairs,  like manufacturer and cyberdyne for example

The values value can be String, Numeric, or Boolean… can you see where we are going yet?





Transport Agnostic

MQTT

.json
file

HTTP

E-mail

(Included 
with 
JSON 

Toolkit)

Presenter Notes
Presentation Notes
JW

For those of you who are wondering, this schema stuffs all well and good, but… How do I connect it to stuff? 

It's links. 

It's that simple. 

It's transport agnostic in that we output a string so the out slot is just a regular Niagara string, and if your transport layer accepts a string, then you link to it and off you go.. Unsurprisingly MQTT and HTTP are the main choices

The JSON exporter lets you output files much like a CSV or PDF export within your station, so if you had perhaps a requirement to populate an external database with Niagara history data, then you could create a suitable schema and create a file….

that same exporter gives you HTTP access from an external client (e.g. curl; wget) as well. 



TODO: Payloads don’t match, HttpClient, name of mqttDataTopic point, font on http:, Maybe WB icon for a folder too?




JSON Schema basics: Bindings

Presenter Notes
Presentation Notes
So we’re going to export this wind speed point by adding it to our schema – 

first we add a new json schema from the palette
Pop in a root object
Then a current time property, just so we can see it updating in our example, … clicking generate we see it update… because it’s not bound to anything it doesn’t auto update… 
now we add a bound object and set the binding ord to our windspeed point, pick out the slots it needs – there are many other options you can find explained in the training material – numeric precision, name of point in the output, the timestamp format and so on… but
We can now see the output of the schema following the value of that windspeed point – so the binding is working to drive the schema update



To demonstrate the basics of a json schema in action we have a simple numeric point representing wind speed being updated every second by a ramp.
We then drag an empty json schema from our palette into the station.
You will immediately notice this large text field which is the string output slot where our generated json will appear shortly.
Now every json payload has enclosing square or curly brackets so we add an empty root object as the base of our schema to contain the other items.
Then we can simply drag in a node representing the current time to give our messages a unique timestamp
Now every time I force generate the schema you will notice the message updates.
Next we want to add some real live station data to our payload so we drag in a bound object.
This has a binding field in which we can select our wind speed numeric, when I click save you will notice we now get a new json message each time that ramp changes as the schema has subscribed to the binding.
Note the bound object took on the name I just typed in, I might want to change this to the name of the target point instead.
Finally – instead of including all in slots, I may wish to just see the summary slots for this component.
We also provide an option for more fine tuning where you can select individual slots to include.


--
To start with, we're going to have a simple single numeric writable representing the wind speed, and that's updating every second according to a ramp. 
We drag an empty Jason schema into our station. 
And we'll have a look inside there. 
The first thing you'll notice is this output slot. The big large text area. This is where our generated Jason will shortly appear. 
Now we want to create some Jason structure, so we drag in an empty object from the palette, which is a pair of curly braces. 
Next we want to see the current time in our message. So we drag from our palette a current time property. It's a key value pair with a string value. 
That's nested inside the root object and now when I invoke the generate action on the schema. 
You're going to see that string Jason output appear, and every time I hit the generate action, the timestamp will update. 
We want something more interesting, so to bring some live station data into our schema, we drag in a nest a bound object. It's called a bound object because it has a binding to an org in your station database. 
So I'm going to go ahead and pick that wind speed numeric writable that we saw a second ago. 
And when I hit save on the schema, it will automatically subscribe to the target of that org and you'll see that it's updating every second according to the ramp and use Jason message string for every update. 
Now that object is called sensor data because that's the name that I gave the bound object. But I might want to change that, for example to the name of the target of the org or the the path of the org. 
Also, I don't want to see all of those in slots every time, so I'll change to summary slots. This is what you see on a wire sheet glyph, and we also allow further fine tuning where you can select the individual slots that you would like to see. 




JSON Schema basics

Bindings use absolute ORDs:
station:|slot:/Generator/Runtime

Presenter Notes
Presentation Notes

takeaway from that video demo is that we are essentially modelling the json using in a tree structure underneath our schema – this blue box has various properties, bound objects – that determine what is seen In the output String…

So having seen that bindings update the JSON on change of value. 
You might already see that using absolute ords like the one shown here doesn't exactly scale well if you need a schema per point. 
The engineering process is not going to be pleasant, or maintainable




Scaling with ‘Relative’ Schema

{
“messageNo” : 1,
“sensorData” : 

34
}

slot:/path/sensor1

slot:/path/sensor2

slot:/path/sensor3
Relative Ord – resolves against base:

{
“messageNo” : 1,
“sensor1” : 34

}

{
“messageNo” : 2,
“sensor2” : 21

}

{
“messageNo” : 3,
“sensor3” : 42

}

Presenter Notes
Presentation Notes
ANIMATE
 
So to overcome this, we use the relative schema –

It uses a base query, which is either bql or neql used to locate items from your station that you want to export. This could be all devices, devices with a given tag, or points in override and so on. 

To select which properties of the base item is exported, it is matched up to relative ords, just like a reusuable PX graphic - only in this case a subscription is generated to included slots, and every time it updates, the JSON output is updated to reflect that change.
 
Now, as well as offering speed and scale of engineering, there's some pretty nice side effects to this base query. 
Now a nice effect of this is if an engineer adds new devices or points to the station at a later date, then they’re automatically included in your cloud export. 
 
Further still, you could move points between schema based on some attribute like their status… If a points in fault, you might describe decide to have a more descriptive payload by moving to another schema or bucket

Or for example if a cloud platform “registers” them by providing a uuid then you stop sending tag or facet data at that point.

And you'll see in the example message here that we've got identifying information, which means that the consumer of that payload has some hope of knowing where it's come from. 




Queries

Presenter Notes
Presentation Notes
As well as binding to points – there is also support to include data from queries – that could be a table based on the contents of the history or alarm database, a series transform (i.e. combined histories)… or maybe a bql query of all the points in a given state from the station.
Basically we are mapping a table to JSON – but rather than doing so with a fixed format – there is the option to choose a query style to suit the output you might need in different use cases… actually hovering over the preview button is the best way to know which one suits














ND

OK, so for our second real-world example, our goal is to render a Google chart using the output of a Json schema. 
But before we get there, we need to explain one other crucial component of a Json schema which is queries. 
As most of you will be aware there is the ability in Niagara to run queries against the component space, the history space, the alarm space, and even search the semantic tags with neql.
We saw earlier in the relative Json schema that it was possible to run a base query to locate the items you want to subscribe to within a schema, so you got 1 json message per point. Well in some cases you may wish to include the values from several points within a single json message, or perhaps include alarm or history data.
To support this, each schema comes with a queries folder which lets you add 1 to many queries which are run on a background interval. 
In this example we are targeting series transform graph. A series transform graph is the result of mashing 2 histories together, and like a bql result, it is essentially a 2d grid of data.
Then within our json schema where we previously had individual point bindings, we can insert a query result at the relevant place and pick an output style which we will explain on the next slide.


FAQ
Bindings not queries for points


--
OK, so for our second real-world section we our goal for this will be to render a Google chart using the output of a Jason schema. 
But before we get there, we need to explain one other critical component of a Jason schema which is queries. 
All of you technical people in the room would be familiar that within Niagara you can run BQL or NEQL queries on the component space, history, alarm space, or the semantic model. 
We need to support that in our JSON  schemas and to do this we have a queries folder under every schema in which you can put one to many queries. 
As you can see here we have a series transform query. 
Uhm series transform is something that lets you mash together various histories into like a 2D table or report. 

So we have that. 
Some query in there, it's found 5 results and then we can nest a query result anywhere we like within our schema. 
You can see we've referenced the query from the query folder and we've given it an output style which will become clear on the next slide. 






Queries
[
[
"Timestamp", "Light 1",
"Light 2", "Average"
],​
[
"55", 50.8002,
43.7057, 47.253

],
[
"00", 49.1097,
56.5209.....

]
]

Presenter Notes
Presentation Notes
So here is a quick example of the wonderfully named Row Array With Header query style… and I chose this mapping of the rows and columsn not because it’s easy to say – but because this format matches what Google’s charting libraries expects to injest … so we can define a seriesTransform to combine a couple of histories, query that transform graph with bql to limit the results… and then using a little bit of glue on the UI side called velocity templates… we can create something like this with nothing other than copying and pasting the HTML examples from Google and the replacing the data with a velocity variable…

















ND:

So each bound query result has a query style. Why do we need one? 
If you think about a query result, it's a 2D array of data and it's a table, and when you render that in Json, there's many ways you could approach this. 
You could go across the rows. You could go down the columns. You could include the Column names or not.
Where do you put the column names and also, do you use arrays or do you use objects or both? 
There's so many possibilities that we have given you 8 basic styles that come with the Json Toolkit.
In this case, we have picked one which matches the json expected by googles chart.

--
So each bound query result has a query style. If you think about a query result, it's a 2D array of data and it's a table, and when you render that in Jason, there's many ways you could approach this. You could go across the rows. You could go down the columns. You could include the. 
Column names in this case. 
Where do you put the column names and also, do you use arrays or do you use objects or a? 
Mixture of both. 
There's so many possibilities that we have given you 7 basic styles that come with the Jason Toolkit, and as we saw in our developer talk yesterday they're easily extendable. Hence the odd looking first item in the list list there called cow say Jason. 




Viewing the result

Presenter Notes
Presentation Notes
JW: 

This, a graphic which can be embedded in your PX pages – but Google Charts alone offers scores of different types of charts, and there are many other libraries you could use!

So this tool kit and the ability to Marshall the rich Niagara object model into a JSON payload opens up a whole new range of possibilities for you to visualise stuff from your stations. 

However, 1 drawback to the simplicity of velocity is the lack of subscription or automatic updating from the UI side. 

The next example, does makes use of bajascript to subscribe the UI element to the output of the schema. 





Presenter Notes
Presentation Notes
JW

Ok, binding in place, changing the bound value, changes the json, meaning the chart itself updates via bajascript.

and I also want to point out here that as well as the data, the configuration of that chart. So like the series colour is also being output by the JSON schema. 

And rather than a color picker to change the chart color you could use the point status or wiresheet logic to change the graphics.


I did tell a white lie, or rather a white-list lie as since this example was created in 4.9 we now have to modify the Content Security Policies in the Web Service to allow Google’s libraries to import… but that’s a good example of Niagara evolving to adapt changes in Browser Security since this demo was conceived.

So if you wanted to reflect a change of status or some interesting D3 animation, then all of that's possible with less heavy lifting than you had to do in JavaScript in the past, because you can now drag and drop to achieve those payloads. 




AWS: Cloudwatch Charting

building/cloudwatch

Cloudwatch

{
"temperature": 22.78,
"occupied": true,
"power": 45.67

}

Presenter Notes
Presentation Notes
Now you may have noticed a distinct lack of “cloud” in those examples – but really how you would use the json schema to build up data isn’t any different… in fact its _more_ difficult to glue the output into those charting libraries than simply linking it to an MQTT or HTTP point for processing in the cloud.
This example shows a very simple payload – formed from bound points rather than queries – linked to a MQTT String Publish point which is sent to a topic in AWS IoT … which after some assistance from a lamba function can be viewed in Cloudwatch as follows…














ND�https://eu-west-1.console.aws.amazon.com/cloudwatch/home?region=eu-west-1#dashboards:name=BuildingMonitoring

We start with another chart example. This time it is slightly different however as Amazon cloudwatch will be providing the graphics. 
Cloudwatch is a part of Amazon Web Services used for monitoring the resources within your account and comes with some nice charts and the ability to setup dashboards. But it also lets you plug in your own external metrics you might wish to monitor.
Guess what, they accept external metrics in JSON via mqtt.
In our station we have another json schema which has 3 bindings to points which represent our office temperature, whether anyone is at work, and power usage. 
The sample json accepted is very simple, just key values pairs in an object.
We have linked that schema directly to an mqtt point connected to an AWS instance, via the building/cloudwatch topic.
So down the bottom of this screen we are now in AWS where a python lambda function who takes the incoming data in json form and publishes to the appropriate cloudwatch metrics.

ND DEMO

---
Indeed so. 
The first one we're going to look at, and I promise this is the last chart you're going to. 
See today. 
We're going to use a component of AWS called Cloud Watch, so the difference this time is our cloud provider is providing the graphics for us. For those not familiar with Cloud Watch, it's a part of a WS which lets you monitor Various resources such as CPU Request response times. Disc utilisation. 

All those sort of things that you're used to seeing on you. Know charts and dashboards. But luckily for us they let you plug in your own external metrics and goodies. 
They accept a JSON format so we have another JSON schema. This time it's a very simple one. It has three bounds. 
Properties, which is a key value pair. We have a temperature occupancy and current power usage point from our Coulomb office. 
The JSON Schema generates this JSON payload that you see in the middle and then we link that to an MQTT string published point for those that aren't too familiar with MQTT, it is a messaging transport and you send messages to named topics. In this case we have a topic. 
Called Building Cloud Watch, to which all those messages will arrive. 
In the next set of graphics, the blue arrows are things that happen in with the toolkit and or inside Niagara and the Black Arrows are things in a WS. 
So once it arrives at this topic, which AWS is subscribed to, we have a little Lambda function, which is a little bit of Python, which simply takes that JSON payload and routes it to the appropriate cloud watch metric. 







Presenter Notes
Presentation Notes
JW

So we'll have a look… what we have is you can see here the latest values we've been streaming from a JACE in our office for the last month or so.

For example the  power consumption and the internal temperature



JSON Alarm Recipient

Presenter Notes
Presentation Notes
So just like with BACnet, SNMP and email, we've now got a JSON Alarm recipient. Only this guy is a little bit more configurable than the aforementioned. Each alarm recipient has a schema below, and again you can build up a payload to suit the requirements of your recipient. 

So as an alarm record is received into the schema, the record is passed down and you can pick out properties that are required by the target system. 

We can wrap those in objects and so forth, like with the other schema.

You could even mix and match– for example the current alarm with the last 5 history records for the point.




Importing JSON

Presenter Notes
Presentation Notes
ANIMATE

We’ve tried to keep tools for importing json in simple components which you can chain together, they’re grouped as:

Routers – which determine where all, or part, of the message should be passed next. You can see a message router in the middle glyph here – this has a “learn mode” or “add slot” action which allows matching messages to be passed to the correct destination.

Selectors – which can dissect complex messages to just bits you need, or provide values for control based on the contents.

And lastly Handlers, which do something based on the message. We only have setpoint change and alarm ack at present so we assume you guys may be creating more of these!
To ack the alarm, for example, we rely on the unique identifier of the alarm being included in the request.

Animate

Finally you can see there is a JsonSchemaService which specifies the user assumed by the Handlers to limit the permissions incoming messages have in the station.








---

So we've been focused so far on exporting, but of course two way communication is also rather interesting. We've tried to keep the tools on the importing side as simple, focused components that you chain together to meet the requirements of your application. 
The three main categories for those are routers which determine where all or part of the message will be passed on receipt. 
So the middle glyph here is a Jason message router. You'll see. It's got some slots added. Those are redid added using a add slot action or it's got a learn mode. If you can throw some payloads. 
Got it and then. 
And you set the key that it switches on. In this case a message type. We've got a message type of setpoint and that goes out of the slot called Setpoint and is passed on to a suitable component. 
The next category are selectors. These allow you to dissect complex messages to just the parts that you need, perhaps providing input for control strategy. 
And finally handlers these guys do something with the message that they receive. You'll see at the moment we've got alarm acknowledgement and setpoint handlers. 
We do envisage this growing in the future, if not from within our team, then the developer community and we hope that these tools to pick apart the payloads saves you all. 
Some time, so as you've probably guessed, having seen us generate an alarm and then mention the alarm acknowledgement handler. 
Uhm, that's where we're going to go next. But before we do. 

Animate

I'd like to draw your attention to the Jason Schema service. This guy has a run as user and that's the user that's assumed by handlers when processing incoming messages in your station. So limiting the permissions that any external cloud system has in your station. 




Alarm Demo

MQTT

/alarm Web App
User

{
"stationName": “forum23",
"timestamp": "2023-05-16 12:24:50",
"uuid": "3842f3f1-21b6-4…",
"alarmValue": 200,
"source": "local:|station:|slot:…….",
"sourceState": "Offnormal",
"offnormalValue": "200.0",
"highLimit": "100.0",
"lowLimit": "10.0"

}

AWS Lex

{
"messageType“ : "alarmAck", 
"user“ : “Andrew",
"alarms“ : ["3842f3f1-21b6…"]

}

/ack

MQTT

Presenter Notes
Presentation Notes
So this is an overview diagram that basically says we use the json alarm recipient to send a payload with various useful items, via MQTT to a rudimentary application in AWS which allows us to use our voice, or written commands to interact with those alarms. A voice activated alarm console might have a useful application somewhere, but it was really just for demo purposes… and I think this gives you a clue what we need to look at next, as that console isnt much use if all we can do is send data!

you can configure the Lex (as in Alexa) service to recognize certain phrases … which can then be turned into an incoming json payload suitable for the alarm ack handler! 














ND

TODO: do we need Launch on both this and the next slide? Will we have two projectors on the stage?
TODO: Make sure work on PC presenting with https://master.d26co6e3m9wy0a.amplifyapp.com/� Username: demo / TridiumJson2019

For the next part of our cloud demo we decided to create an alternative alarm console. 
So firstly we need to get our alarm records into our aws application. For this we use the json alarm recipient we just saw, and we pick out the following properties to form our payload.
We then follow a similar route we saw with the cloudwatch, a different mqtt topic as we have a different message format and this time our function adds a simple incrementing numeric id to the alarm and stores it in dynamodb which is a nosql key value pair database – so very suitable for json.
Finally a tiny webapp will list these alarm events on a web page in order using the new human friendly alarm id as you can see in these 2 coloured blocks, unacked alarms are red.


Before we go any further a little disclaimer, Jason and I are not big amazon aws experts and so we received a lot of help from a friendly local aws ninja called Marty who works for omnistratus in building these demos. If you have deeply technical questions around some of these components then we may not be able to answer you today!

ND DEMO


Yes, so for our next prototype we decided we want an alternate alarm console in a WS and so there we go. 
We have a Jason Alarm recipient which has an embedded Jason schema and this is an output that we've created. You'll notice there's a list of key value pairs. We have an alarm timestamp and. 
UUID, the current value and the thresholds. 
Once again, we're going to send it over MQTT to a WS a different topic name this time because it's a different message format. 
And we have another function and this one is going to do a little bit more work. It's simply going to assign an incrementing simple number to each alarm record, because we don't want to show the the long. 
Uhm, UUID string in our web app. 
The Jason is then stored in Dynamo DB, which is a a WS key value pair store. Perfect for Jason and then we have a little web app which is looking at that data store. 
And it's going to look something like this where you have these blocks where the red blocks are unacknowledged alarms and the green ones are acknowledged, and you can see there's a little numeric ID in the top corner of each block. 
I mean it. 
OK, so here are some alarms we made earlier. You can see a couple we've already been acknowledged. Let's put a new one there. 

Demo Text (ND?)

So this is our alarm service. 
This is our Jason Alarm recipient. It updates its output string every time new alarm record occurs, which we've put here for convenience on the wire sheet. 
We have a numeric writable here with a high threshold of 100. 
So let's set this to. I don't know 103. 
And that's in alarm state and fingers crossed when we come back here. 
There it is. You see the breaching value is 103, so so far so good. We've got our alarm in a WS. Naturally, the next thing we want to do is acknowledge that alarm. 
So we need a bit more json toolkit theory for this. 




Presenter Notes
Presentation Notes
This is what the webapp front end looks like – you can either type in the box next to send, or speak to it … now I don’t know if it’s my accent, or taste in music, but Amazons lex engine appears to react to my voice only when I include expletives in the sentence so I’ve decided to spare you a voice activated demo today.



JSON Path

Oracle Hospitality Web Services…

Hotel Room Occupancy Data 
in < 15 Minutes

(The existing driver took over a month 
to develop) 

$.housekeepingRooms.room[?(@.roomId==’11’)].housekeeping.housekeepingRoomStatus.frontOfficeStatus

Presenter Notes
Presentation Notes
OK – I want to end on a quick story – a customer wanted to work with the Oracle Hospitality web service – this is the cloud offering that hotels are moving towards for integrating all the buildings assets to the property management system – and historically close to my heart given my work on the Micros driver that does the same job with a far more ‘mature’ protocol – now using the http driver we had authentication solved in five minutes, and within 10 minutes we had an appropriate json path expression to pick out any given rooms occupancy data – and knowing what work has to go on behind the scenes in the regular driver to do the same job it bring me joy that you – our community – now have these tools to approach simialir APIs without code 





final plug…  a customer reached out with a request for parsing some Web Service or another… actually for Oracle Hospitality… using the Niagara HTTP driver added in 4.12 we had authentication and data working inside of 10 minutes… and after, I’ll be honest 10 more minutes of Googling JSON path (it’s not a Tridium specific syntax!) we had a solution to get occupancy data for each room in the hotel into a point… this one is a more than a simple example but it matches up to specific rooms in the payload so the occupancy value can be linked to physical devices in the room.

This isn’t hugely surprising with these tools… but as someone who wrote the N4 driver to integrate hotel room occupancy from Oracle or Micros systems around 2015 I assure you handshaking; chopping up streams of bytes, the business logic when a guest moves room from one JACE to another…. took more than 20 days, not minutes …

 never mind the red tape around fetching the guest language to customize their controls




Recap: JSON Schema Feature
• Data Selection

• Binding, Base Query, or Export Markers

• Query Data
• Any BITable ( history: alarm: transform:    bql:   neql: )

• JSON Alarm Recipient

• Timestamp / Message Count Properties

• Tag / Facet Support

• Configuration
• COV or On demand
• Timestamp format, Numeric precision

Presenter Notes
Presentation Notes
Please refer to 

This isn’t a deep dive (maybe thankfully for all)
-        Documentation
Videos on YouTube
Tridium University courses
Examples in the palette

We've seen that you can pick up the data that you wish to export – be that from points, or the semantic data like tags or facets
We've seen quite significantly that you can grab any table from the framework and choose how that's encoded. 
We've seen the alarm recipient at work, the timestamps that you can include. You can change the format of that. 







Niagara Cloud Suite
Kevin Mamajek
Tridium



Niagara Cloud Suite

Overview

hello



Schedule 
Histories

Alarm 
Histories

Niagara Control API’s
Commands Back 

to Niagara

Secure Commands via APIs for cloud 
overrides and recommendations

Niagara Recover
Backup

Browser Access to Backup files (5)

Niagara Data Services
Modeler Histories

Secure Access to Histories/Model via APIs

Simple Historical Graphs

Niagara Remote
Wiresheet

Access
Dashboard 

Access

Remote browser Wiresheet Engineering

Remote browser Niagara Dashboards (Px)

Remote browser Manual Overrides

Cloud Connection Services

Niagara Cloud Suite

Cloud Initiated 
Restore

Cloud Initiated Niagara 
Updates

Restore / Niagara Updates Portal

Device CertsEncryption IoT Cloud Connections
Cloud Authentication Secure Device Certificates, easy 

Onboarding, encryption 

Storage API’s

3rd Party Services

HTTPS

BackupsRemote Engineering

JACE and/or Supervisor

Microsoft Graph



1. Registration
2. Model
3. History Selection
4. Activate History Channel
5. Confirm Backup Schedule

Demonstration of 





1. Viewing History Data via Chart
2. Marking a backup Preferred
3. Downloading a backup for 

restore

Demonstration of 







Getting Started with 
the Niagara Data 
Service API
Sarah Johnson
Tridium



NDS API Endpoints

1. Query the Entity Model API 
for data points based on 
point characteristics

2. EM API responds with 
cloudIds of points with those 
characteristics

3. Query Egress API with 
cloudIds

4. Receive historical data



Getting Started

• Get required information from Tridium

• Get access token (Postman)
• Send first requests to API endpoints (Swagger UI)
• Integrate with application (Grafana)

Customer Id Number

Client Id String

Client Secret *****************************

System GUID String



Bearer Access Token



Bearer Access Token



Bearer Access Token



Sending First Requests



Sending First Requests



Sending First Requests - pointNames



Sending First Requests - pointNames



Sending First Requests - pointNames



Sending First Requests - pointNames



Sending First Requests - RmTmpSp



Sending First Requests - RmTmpSp



Sending First Requests - RmTmpSp



Sending First Requests - tagNames



Sending First Requests - tagNames



Sending First Requests - tagNames



Sending First Requests: tagValues



Sending First Requests: tagValues



Sending First Requests: tagValues



Sending First Requests - Telemetry



Sending First Requests - Telemetry



Sending First Requests - Telemetry



Sending First Requests - Telemetry



Third-Party Integration



Third-Party Integration



Third-Party Integration



Third-Party Integration



Third-Party Integration



Third-Party Integration



Third-Party Integration



Recap

• Communication Paradigm
1. Get CloudIDs from EntityModel
2. Get Historical Records from Egress

• Getting Started
• Get Bearer Access Token via Postman
• Send First Requests via Swagger

• Integrate with Third-Party Apps





Q&A (if we have time)




	Slide Number 1
	Niagara Data + the Cloud��A Choice of Capabilities
	Slide Number 3
	History Archive Provider
	Terminology
	Niagara History Database
	Relational database benefits
	You may remember me from such films…
	RDBMS Network
	Archive history provider
	What do I need?
	Slide Number 12
	General setup
	Add your database
	Configure Database connection
	Set up provider
	Slide Number 17
	Slide Number 18
	Cloud/API Sourced Data Ingress 
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	MQTT – Making Connections
	The Natural Order
	The New Natural Order?
	Slide Number 64
	Knowledge Refresh
	Why this is a good thing
	Use Case 1 – The Enthusiast
	Needs
	Use Case 2 – The IoT Professional
	Needs
	Use Case 3 – The BMS Engineer
	Needs
	Slide Number 73
	Taking the first step
	Different ways to authenticate
	Anonymous
	User Credentials
	Accept the Brokers certificate
	Slide Number 79
	Knowledge Refresh 2: X509
	Knowledge Refresh 2: X509
	Knowledge Refresh 2: X509
	Knowledge Refresh 2: X509
	Client Certificate Auth
	Broker setup
	Client Certificate Auth
	Client Certificate Auth
	Slide Number 88
	Azure – SAS Tokens (since 4.12)
	On in 60 seconds?
	Takeaway points
	Slide Number 92
	AWS - Certificates
	A lot of work
	Slide Number 95
	The Goal
	1- New AWS Authenticator / Service
	2 – The Signing Service
	3 – New Provisioning Job
	A fleet in 5 minutes?
	1 Register CA Certificate
	2 Setup Signing Profile – 3:40 remaining
	3 Provision MQTT Devices – 2:40 remaining
	Done
	Takeaway points
	Thank you
	Slide Number 107
	JSON Toolkit�Preview
	Where is JSON used?
	What is JSON?
	Transport Agnostic
	JSON Schema basics: Bindings
	JSON Schema basics
	Scaling with ‘Relative’ Schema
	Queries
	Queries
	Viewing the result
	Slide Number 118
	AWS: Cloudwatch Charting
	Slide Number 120
	JSON Alarm Recipient
	Importing JSON
	Alarm Demo
	Slide Number 124
	JSON Path
	Recap: JSON Schema Feature
	Slide Number 127
	Niagara Cloud Suite
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Getting Started with the Niagara Data Service API
	NDS API Endpoints
	Getting Started
	Bearer Access Token
	Bearer Access Token
	Bearer Access Token
	Sending First Requests
	Sending First Requests
	Sending First Requests - pointNames
	Sending First Requests - pointNames
	Sending First Requests - pointNames
	Sending First Requests - pointNames
	Sending First Requests - RmTmpSp
	Sending First Requests - RmTmpSp
	Sending First Requests - RmTmpSp
	Sending First Requests - tagNames
	Sending First Requests - tagNames
	Sending First Requests - tagNames
	Sending First Requests:	tagValues
	Sending First Requests:	tagValues
	Sending First Requests:	tagValues
	Sending First Requests - Telemetry
	Sending First Requests - Telemetry
	Sending First Requests - Telemetry
	Sending First Requests - Telemetry
	Third-Party Integration
	Third-Party Integration
	Third-Party Integration
	Third-Party Integration
	Third-Party Integration
	Third-Party Integration
	Third-Party Integration
	Recap
	Slide Number 170
	Slide Number 171
	Slide Number 172

