

Optimising and
Troubleshooting
Niagara Applications
James Johnson – Tridium
Jason Woollard - Tridium

hello

Sold Out
Show

Fairwell
Tour

Presenter Notes
Presentation Notes
Image by dgim-studio on Freepik

"image: Freepik.com". This cover has been designed using assets from Freepik.com

Best Practices

• The Niagara Framework provides multiple options to
accomplish the same task.

• The best option varies depending on specific customers
and requirements.

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://empowermentmomentsblog.com/2014/11/17/dare-to-be-the-best-you/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Why do I need to learn troubleshooting

Planning the rescue
before the mission begins

This Photo by Unknown Author is licensed under CC BY

https://www.flickr.com/photos/soldiersmediacenter/1104555090/in/photostream/
https://creativecommons.org/licenses/by/3.0/

The Six Stages of Debugging

1. That can’t happen
2. That doesn’t happen on my machine
3. That shouldn’t happen
4. Why does that happen?
5. Oh, I see
6. How did that ever work?

What Should You Look For

• CPU usage – evaluate overall and by process if available,
overall should be less than 80%.

• Memory – after garbage collection used heap should
be less than 75% of max heap.

• Histories – maximum of 6000 for a JACE-8 controller.
• Engine Hogs – insight to what components in the station

use the most CPU.
• Spy – more detailed diagnostic information.

Presenter Notes
Presentation Notes

Frequent GC events indicating running low on heap?

Spy

Finding More Information
• Adjust logs to different levels for debugging purposes.
• Return to default logger settings when finished.

Tech Support Dos and Don'ts
• Provide Niagara version
• Provide a copy of custom modules
• Explain how to reproduce the issue
• Provide a station backup and bog file passphrase
• Provide application director output with errors, consider

performing a thread dump.
• Provide backup console text and spy logs
• Provide client console output for UI type issues
• Don't provide screen captures of text files

Troubleshooting Articles

• Unexpected Restarts
• Fox Connections
• BACnet MSTP
• BACnet Tuning Suggestions
• Code Signing
• Tridium Talk – Developer Series

https://www.niagara-community.com/s/article/Troubleshooting-Unexpected-Restarts
https://www.niagara-community.com/s/article/Troubleshooting-FOX-connections
https://www.niagara-community.com/s/article/Troubleshooting-BACnet-MS-TP
https://www.niagara-community.com/s/article/BACnet-tuning-suggestions
https://www.niagara-community.com/s/article/Code-Signing-Tips-and-Troubleshooting
https://www.tridium.com/us/en/services-support/events/2021/06/2021-06-17-debugging-niagara

Scenario 1: Bog File Protection

Bog File Protection - Overview

• Sensitive information is encrypted in a bog file.
• Bog files in a backup distribution file or under your

Niagara user home are encrypted using a passphrase.
• Bog files in the Niagara daemon user home are encrypted

using the host’s key ring file.
• A unique key ring file is generated for each Niagara

installation on a given host and is locked to that host.

Reversible Encoding Key Source
• None – not encrypted, file can be copied to other hosts.

• External – encrypted using passphrase makes bog file
portable, file can be copied to other hosts.

• Keyring – encrypted using node locked key ring file, must
use station copier or backup dist to make portable.

Bog File Protection - Workflow
• Bog file on the remote station is encrypted using the

host’s key ring file.
• Station copier and backup functions decrypt the bog file

using the key ring on the host and re-encrypt the bog file
using the host’s passphrase prior to transfer

Host Passphrase = MySecret27#
Bog encrypted by host’s key ring

Host Passphrase = Niagara4Rocks
Bog encrypted by passphrase MySecret27#

Station Copier or Backup Dist

Bog File Protection - Workflow
• Bog file and host passphrases don’t match.
• Station copier and commissioning wizard functions

prompt the user to provide the bog file passphrase to
decrypt the bog file from the client and re-encrypt using
the host’s key ring.

Host Passphrase = Niagara4Rocks
Bog encrypted by passphrase = MySecret27#

Host Passphrase = PigsFly@82
Bog encrypted by host’s key ring

Station Copier or Commissioning Wizard

Scenario 2: Using the Poll Scheduler
to improve performance

Presenter Notes
Presentation Notes
Thanks James,

Our next scenario goes back to basics - polling points! It’s such a simple topic, but tuning is often overlooked so seems a reminder is a good idea… large scale projects will thank you for keeping this in mind!

Getting Straight to the Point…

• The Control Points used in
strategy / wiresheet logic have
a null Proxy Extension

• Support extensions:
• HistoryExt
• AlarmExt
• DiscreteTotalizerExt
• …

Presenter Notes
Presentation Notes
So –

The title is a little ironic, given that some meandering will occur… but let's start with a plain old point you would use in control strategy

It doesn’t have a proxy extension, but has prioritized inputs and supports the various extensions for alarming, history and so on – and, in contrast…

The Proxy Point is, one that…

• Has an Proxy Ext
appropriate to it’s
parent driver

• With driver specific
properties e.g.
• Address details

Presenter Notes
Presentation Notes

A Proxy point covers the same features, but with a non null proxy ext. The proxy extensions job is to map between the value of the point in Niagara’s object model, to the specific read or write activity needed for a driver to function

This example is a modbus point – it unsurprisingly has properties specific to addressing a register in a modbus device, very exciting!

Now, modbus, in particular is a fine example of a protocol where one might understandably collapse in a heap after deciphering the devices datasheet with various offsets, address formats and so on –it’s seems entirely excusable move on, without considering those items highlighted in green, as soon as we see data coming back from the device…

Although often folks do remember, and then choose Fast for the Poll Frequency setting on every point - that’s a good thing, right?

BACnet example…

• Has an Proxy Ext
appropriate to it’s
parent driver

• With driver specific
properties e.g.
• Address details

Presenter Notes
Presentation Notes

Likewise, here we’ve been able discover a point from a BACnet device, hopefully a less arduous exercise than with modbus, but I for one would be likely to drop them into the station database and start getting some real work done… overlooking the Tuning Policy property shown here in green

Tuning only tends to become interesting once we _need_ to do it due to performance problems… The object Id perhaps applying an appropriate conversion table is my main concern beforehand.

What is a Tuning Policy?

• Found under the Network
• Min Write

• “Throttles” writes

• Max Write
• Re-writes to “Forgetful” Devices

• {stale}
• Indicates delay / congestion

• BACnet is a special case!
• Poll Frequency; COV settings

Presenter Notes
Presentation Notes
So what are these tuning policies – and what do these properties mean?

Well Tuning Policies are found directly below the Network, and we can create multiple policies, giving us the ability to tune how the driver behaves with groups of points assigned to them

For example if you have a device that can’t cope with frequently changing values– and you’re not able to use wiresheet logic to mitigate it happening – then the final line of defense is the Min Write Time – which basically says, if I’ve written to this point within the past n minutes – then discard any write until that period elapses.

Or if a device was, like me, prone to forgetting things, or something is overwriting our value.. You might set the Max write time to 1 hour in order to re-assert the most recently written value

Min throttles, while max re-asserts writes, … just be aware that
a very low max write can cause absolute havoc, and
when throttling writes there is potential for a change of state to be lost so we need to really understand the purpose of the point to know if that is acceptable e.g. an accumulating meter value will catch up eventually if sending every ‘tick’ is too much.

Stale time can be used to indicate congestion or delay in responses for points – it basically says I don’t fully trust the current value because it’s delayed by at least the specified amount of time…

Some tuning policies are customised to the network e.g. BACnet has setting for COV, while the HTTP driver has timeouts, Follow redirects, use caches

What is a Poll Scheduler?
• The Poll Scheduler has

• Fast
• Normal
• Slow

• Target busy < 80%

• Right click
• Reset Statistics

Presenter Notes
Presentation Notes

Now the tuning policies best buddy, is the poll scheduler - on the surface this gives you some helpful statistics, but behind the scenes it is scheduling the polling activity for the driver!

That scheduling is done over three buckets – fast, normal and slow and you can see it offers stats for each…

The takehome here, is that you want the busy time, which is calculated based on the cycle time and desired poll rates of the three buckets, to be, generally speaking, below 80%

The easiest way to reduce it, is to poll some of the points more slowly!

We will touch on the Dibs polls again later – but this basically allows queue jumping when a graphic is first loaded.

Now even if you are not an engineer – there is a really important thing to remember here – that age old question about “How many points can a given station accommodate??” – always answered with counter questions, examples or basically “it depends on…” most often comes down not to the number of points, but how carefully you can manage accessing them – how often do you need to access the data? Throughput is normally more of a useful metric than number of points alone. Alongside the bus type – i.e. for serial we can usually calculate the maximum each port could accommodate with ideal wiring conditions.

Now if you make change to the poll rates, or move points around – you can use the Reset Statistics action to get an up to date view of those changes (it updates at a 10 second interval) but please note than taking care of these settings lets us get more out of every controller!

Where is the Poll Scheduler?

• Mostly, found under the Network
• Individual proxyExt has Fast/Normal/Slow

• …Unless using
• BACnet: each Trunk (IP; MS/TP; SC) has a Poll Service

• Fast / Normal / Slow rate can vary by MT/TP trunk for example
• OPC UA: each Device has it’s own Poll Scheduler

• Community developed drivers may vary

Presenter Notes
Presentation Notes

So being motivated to explore the Poll Scheduler and it’s f/n/s statistics, it’s only fair I point out that whilst it’s almost always found below the Network – for some cases like BACnet or OPC UA - there are more flexible options available to let those drivers scale well, or because they are limited to only one, often rather large, network so need that flexibility…

For example in BACnet you can actually tune each port of the network, so if you’ve got a problematic MS/TP trunk you can set the polling accordingly.

For most drivers, you choose F/N/S on the point, for BACnet you choose F/N/S on the tuning policy

Don’t worry too much about remembering this – as it’s not hard to work out when you have any given network in front of you, and tuning BACnet is a longer conversation than we have time for here! (COV; AWS Threading; Worker Pools)

Match Points to Policies & Poll Rates

Fast

Normal

Slow

Not always simple e.g. Fuel Level should change slowly? 💧💧

Presenter Notes
Presentation Notes

The main thing is that whichever driver is being used, we want to optimise bandwidth usage with our Fast, Normal, Slow buckets, depending on the Purpose of point.

As alluded to before, this is understandably overlooked, and how many datasheet or point lists have you seen that specify a poll rate… or semantic data if we are lucky.

So in this modbus example, we just using the Poll Frequency in the Proxy Ext of each point

Now James might be happy talking about Static duct pressure…. But a Generator is an example I can easily relate to… for example runtime or OAT shouldn’t change _that_ quickly
Whereas things like oil temperature you would want to keep a keen eye on…. Others are not so clear cut – for example Fuel level in a tank _should_ change slowly, but we want to know if it drops fast … in a bacnet device cov with a cov increment would be the efficient choice for that case.

Who knows maybe the semantic model will imply something about appropriate read intervals in the future when AI is harvesting points and all we do is through certificates at things to enable the harvester in the building!?

How do I know this is a problem?

• {stale} points
• An as yet unfulfilled

read request, or
“untrustworthy value”

• Indicates a congested
network / device

• Not updated since the
read request was sent

• “Stale time” interval
drives this

• Slow loading
graphics

• Ping fails
• {down} Devices

• Read Fails
• Points in {fault}

• Queue Full
Exceptions
• = point qty

• Timeouts
• Serial or IP

App Dir

Presenter Notes
Presentation Notes

All too often ignoring the different poll rates mean we start to see customer facing performance problems – like points or device with a non {ok} status!

As we mentioned before, a status of {stale} means a read or write was dispatched, but the response was not received before the configured Stale Time – basically the network or device is responding too slowly, so their could be congestion on the bus, or we are simply polling too fast… never set this less than the expected cycle time! (also updates from last polled, not viewed.. And when zero they go state if unsub, but we never _see_ that!)

Application Director is a good thing to check on, as we would likely see timeout messages from the driver, or sometimes Queue Full Exceptions.

These are interesting – as sometimes, given human nature, an engineer will just make the queue massive and the error goes away… but actually queues should normally be slightly greater than the number of points in the network – to accommodate a tidal wave of writes on start, for example, which it buffers while they go out on the wire – if polling is too fast for a sustained period then a bigger queue is just deffering the matter! Of course, Niagara has your back in this case, and will mark the point as stale if you have a non zero stale time set in the Tuning Policy

So these issues motivate paying attention to that point grouping task…. Now before we look at how to do it – lets just meander to…

Application Director Tips

• Stream To File
• Capture rare or

extremely verbose errors
• Easily share, or search

with text editor

• Output Dialog
• Keep on second monitor

• Dump Threads
• Debug hanging behaviour

Presenter Notes
Presentation Notes
App Director tips –

Basically Stream to file is useful for capturing console output that we can then search on in an editor, whilst the output dialog button can mean we keep an eye out on a separate monitor for issues while we are working with the station…. Especially helpful if, as James’ showed, you enabled fine level logging in the debug service (and remembered to click save!)

Application Director - Life Goals

Presenter Notes
Presentation Notes
Of course we are all aiming for serene output like this from our station!

It’s hard to even see issues once we’re in the state depicted in green! Although through the lens of tech support, it’s surprising just how many sites functioning like this!

However - even if the logs look healthy at the point the project is commissioned, there are of course many factors external to the station – firewalls, poor cabling, faulty devices – that could lead to changes we need to be aware of later on – ideally prior to the end user … And to that end 4.13 includes a new feature which can help….

Syslog – new for 4.13

• Use this to win friends in IT
• Switches, Routers, Servers…
• Central location / archive
• Smart log analysis tools

• See also:
• SNMP

• Monitoring by IT
• LDAP / Active Directory

• Integrate with domain user accounts

Presenter Notes
Presentation Notes

Support for syslog!

Now Niagara is, fashionably late, to this party – given it’s been around for longer than our combined tenure working with Niagara … as a clue I pointed out in retort to his “live fast die young” live demo disclaimer, that we aren’t going to make the 27 club now!

Syslog – has been a mainstay of system administration for decades – with networking or unix kit in particular – and basically means logs from equipment are sent to a central archive.

What is more interesting though, is just how many tools exist for managing that data – either visually, searching or more and more commonly using machine learning to spot changes in console output and flag it up to sysadmins…. as the slide suggests, this level of visibility is likely to win you friends in the IT department and it should be very useful on large scale projects – as would the other ‘enterprise’ IT features like SNMP or LDAP integration.

It _should_ make troubleshooting so much easier – especially since the presence or issues doesn’t always correspond to an engineers eyes being on the console…

Get back to the Point(s)

• Does Niagara do anything to help me here?
• The subscription model ✅

• Basically means – don’t read something unless you need to!

• When is a point subscribed then?
• Viewed (px graphics, wiresheet etc.)
• Monitored for alarm or history
• Onward linked in control strategy

Presenter Notes
Presentation Notes
And _one_ of the reasons for that could be how Niagara optimises the need to poll points at any given time…. The subscription model

No one likes an intermittent error, yet support have plenty of logs sent in with no smoking gun in sight… hence why longer-term logging via syslog should be beneficial

Basically the framework only polls stuff it needs to know about – being viewed, or monitored for alarm, history.. Or onward linked into strategy.

This optimisation means that the polling volume isn’t necessarily constant – Niagara was designed from the outset to be intelligent about when it needs to look at something - all these potentially slow serial or wireless protocols mean an efficient design was very much necessary

It’s also smart to try and improve the user experience – for example a Dibs Poll .. allows queue jumping when a graphic is first loaded.

Improve Modbus Efficiency
• After points have been added to a Modbus Device

• Use this action to poll consecutive registers

Presenter Notes
Presentation Notes
One performance tip, as we are working with Modbus, is once all the points have been added to use the learn optimum poll action … this causes consecutive registers to be read where possible, reducing the number of requests made to device. Just like Read Property vs Read Property Multiple in BACnet which is handled automatically.

But please note – only invoke this once you have the points added.

(Actually, with very large projects in mind, it’s worth noting that the BACnet AWS/OWS drivers offer some benefit like multiple threads for polling.)

Use the Program Service for many Devices

• Bulk changes of points
• Search below the Network for

driver:ProxyExt
• Edit Slot button

• Can also stagger History
Collection this way
• Although On-Demand history

mitigates the need now

Presenter Notes
Presentation Notes
How to change en-mass

In pointMgr, show descendents Home ^ EDIT … if someone put everything in fast for example
But this doesn’t let us filter by name, and in reality there is rarely one device below the network
So – for multiple devices, use the Program Service

Provisioning – for lots of controllers!

• For lots of controllers

• Push out a template with
Poll Frequency changes

• Also, schedule backups

Presenter Notes
Presentation Notes
And finally on this…. You could push out templates to update Poll Frequency settings en-mass using the provisioning service, or use a robot…

Provisioning is of course one of the best features of the framework – even from a troubleshooting at scale point of view. Inevitably projects are deployed with issues in the strategy and as a single engineer having the ability to make complex changes to potentially 1000’s of stations with just a few clicks is a wonderful thing – avoiding truck rolls, or even worse… mouse miles!

Over to James, and his broken schedule import!

(Root/master sup - Program object to backup supervisor available via support channel)

Scenario 3: Broken Schedule Import
or Export

Missing Schedule Import Scenario
• Supervisor has a Niagara schedule export, but

subordinate station does not have a reciprocal Niagara
schedule import.

• Exception thrown every 5 minutes in application director,
BNiagaraScheduleExport Execution Time..

Schedule Export Configuration Scenario
• Supervisor has a Niagara schedule export and

subordinate station has a reciprocal Niagara schedule
import.

• Schedule in supervisor has been renamed, moved or
deleted causing Unresolved Exception.

• Exception thrown if the subordinate station's
schedule import descriptor executes.

How To Find The Culprit
• Exception may not specify the slot path of the component

causing the exception.
• Stack trace indicates the Java class of the component.

• BQL query used to find the BNiagaraScheduleExport
components with a fault status

Fixing the Issue
• Recreate the Niagara schedule import in the subordinate

station.
• If no longer required, delete the Niagara schedule export

in the supervisor.
• Update the properties on the Niagara schedule export in

the supervisor or Niagara schedule import in the
subordinate station.

Scenario 4: Engine Watchdog Timeout

Presenter Notes
Presentation Notes
In an ideal world, you won’t experience Engine Watchdog Timeouts – but in the event you do, the key to debugging is basically looking at what was running on the engine thread - at the point of failure, revealing which area we need to investigate.

Most often these are caused by *developers* (including us!) not following certain practices – which we try to communicate regularly – in fact Mike James did so, again, in Monday’s developer session.

Please note though, if you ever write your own Program Objects this scenario should be of interest to you also, and rest assured it’s quite simple to avoid issues by using the Thread Examples from the Program Palette.

What is the Engine Thread?
• Control Points - Updating Out value

• plus Alarm Ext, History Ext

• Triggers

• Schedules

Designed by Freepik

Presenter Notes
Presentation Notes
So - The engine thread - is responsible for several key functions in a station

Firstly Executing Control points – they evaluate the in slots from their priority array to determine the active value of the out slot e.g. highest priority
Any new value of the “out” slot is passed to extensions, such as history or alarm ext to act accordingly
If there is an onward link, the new value will traverse the link and be routed to the next component on the next “cycle”

Typically this is all happening very very quickly, and there will be many other threads servicing driver io, graphics and so on but the engine thread is essential to the smooth running of a Niagara station…

It also handle executing events from triggers or schedules at the appropriate time … but it’s achilies heel? Just like a jet engine it’s vulnerable to bird strike.. In the form of long running tasks…

https://www.freepik.com/free-vector/black-crow-bird-cartoon-sticker_20500563.htm#query=bird%20cartoon%20crow&position=5&from_view=search&track=ais

Engine Hogs

Presenter Notes
Presentation Notes
Ok we’re mixing animal metaphors now… is hog strike a thing?

Right click Spy > sysManager > engineManager > scroll down to Engine Hogs we get a table like this

Now the Total Time spent on the engine thread will slowly accumulate for all components – so the number in isolation isn’t much help to spot a “Hog”

What we are normally looking for is outliers at the top of the table – in this case the top two rows have a Total Time significantly higher than the others, but the explanation is quite simple – that multivibrator is set to a 1 second interval so is a ‘busy’ component - and it’s linked to the point listed above it, which as it has a history extension too, gets ranked highest as it has more work to do each cycle.

It’s a similar story for the 2 NumericWritable’s below that, linked to the SineWave… the matching Total Count values giving us a clue they could be working in unison.

Essentially this little station is quite healthy… it would be an extreme outliers from the Total Time(s) below that warrant investigation, or a component with a very high Avg Time .. note these are all in the order of microseconds which is fine. OUTLIERS is what we would be looking for.

What is a Watchdog Timeout?
• If the Engine Thread is unresponsive an

Engine Watchdog Timeout occurs at the
specified interval:

• Policy
• Reboot

• Controllers only
• Terminate
• Log Only (debugging)

Presenter Notes
Presentation Notes
So as we will see shortly – less than ideal things can happen if the engine thread is blocked by code that should be run on a different thread – and as is common to many applications like space or robotics (operating systems) we use a watchdog to monitor our critical thread and take action to return to a known good state if it becomes unresponsive...

For a controller that action is to generate a stack dump for diagnostic purposes and then reboot – the most sensible recovery action once the timeout interval is reached.

You can choose less dramatic policy actions whilst debugging issues – for example Log Only if you expect the station to recover at some point…

Why did it happen?
• Spy > Console (to view archived logs)

ENGINE WATCHDOG TIMEOUT STACK DUMP @ Tue May 25 22:56:30 CDT 2022
…

"Nre:Engine" #16 daemon prio=5 os_prio=0 tid=0x000000001c42e800 nid=0x7860 waiting on condition
[0x000000001b58f000]

java.lang.Thread.State: TIMED_WAITING (sleeping)
at java.lang.Thread.sleep(Native Method)
at Prog_f89acc5065c8476daf91e7aefcc1f459.onExecute(Prog_f89acc5065c8476daf91e7aefcc1f459.java:54)
at com.tridium.program.BProgram.doExecute(BProgram.java:146)
at auto.com_tridium_program_BProgram.invoke(AutoGenerated)
at com.tridium.sys.schema.ComponentSlotMap.invoke(ComponentSlotMap.java:1909)
at com.tridium.sys.engine.EngineUtil.doInvoke(EngineUtil.java:62)
at com.tridium.sys.engine.EngineManager.checkAsyncActions(EngineManager.java:470)
at com.tridium.sys.engine.EngineManager.execute(EngineManager.java:271)
at com.tridium.sys.engine.EngineManager$EngineThread.run(EngineManager.java:910)

Presenter Notes
Presentation Notes
But the stack dump is key to answer why did it happen… once the controller is back online, you want to look in Spy > Console, (or the station folder for archived console.txt files.. the ones with timestamps on)

We are looking for the thread named nre:Engine in the stack trace – which should tell us what was running at the point of failure – in this example a Program – but it could be a driver or any other type of component.

There are some freely available websites that can be used to analyze thread dump visually
Other causes – heap (or memory) exhaustion, historically - data recovery service, genuine deadlock (outside the scope of this presentation)

Demonstrating a blocked Engine Thread:

Presenter Notes
Presentation Notes
Clear history for resolution (in code)…. Make it go {fault} for a second beforehand?

Now _ of course _ if this was a history where the Proxy Point had entered period of {down} or {fault} status then the history chart is geared up to show us that…
Click the O button to show status in chart viewer! All in one chart

This history was being triggered by the multivibrator … during the gap is when the engine thread was blocked, the Control Points on the wiresheet also stopped updating

Finally…

• System Monitor Service
• Pro-active Logging and

Alarming for critical metrics:
• CPU
• Memory

• Added 4.4

Presenter Notes
Presentation Notes
Ok – so a final note on pro-active troubleshooting – please check out the System Monitor palette – it houses the System Monitor Service which you can use to log and alarm on various ‘health’ metrics for a host running Niagara such as CPU or Memory usage – getting an early warning about issues with the items it covers can only benefit you and your customers!

Remember:
• Use station copier or backup dist to copy config.bog from

daemon home
• Put points in appropriate polling buckets
• Use BQL to find culprits
• Provide stack trace and Niagara version
• Check nre:Engine in console (via Spy) if you experience an

Engine Watchdog Timeout
• Contacting support? Please try to share the text version of

any error include the version number 🙏🙏

Presenter Notes
Presentation Notes
And that’s all we have – thanks for your time.

Questions

Presenter Notes
Presentation Notes
nre -props 2>&1| findstr home

	Slide Number 1
	Optimising and Troubleshooting Niagara Applications
	Slide Number 3
	Best Practices
	Why do I need to learn troubleshooting
	The Six Stages of Debugging
	What Should You Look For
	Spy
	Finding More Information
	Tech Support Dos and Don'ts
	Troubleshooting Articles
	Slide Number 12
	Bog File Protection - Overview
	Reversible Encoding Key Source
	Bog File Protection - Workflow
	Bog File Protection - Workflow
	Slide Number 17
	Getting Straight to the Point…
	The Proxy Point is, one that…
	BACnet example…
	What is a Tuning Policy?
	What is a Poll Scheduler?
	Where is the Poll Scheduler?
	Match Points to Policies & Poll Rates
	How do I know this is a problem?
	Application Director Tips
	Application Director - Life Goals
	Syslog – new for 4.13
	Get back to the Point(s)
	Improve Modbus Efficiency
	Use the Program Service for many Devices
	Provisioning – for lots of controllers!
	Slide Number 33
	Missing Schedule Import Scenario
	Schedule Export Configuration Scenario
	How To Find The Culprit
	Fixing the Issue
	Slide Number 38
	What is the Engine Thread?
	Engine Hogs
	What is a Watchdog Timeout?
	Why did it happen?
	Demonstrating a blocked Engine Thread:
	Finally…
	Remember:
	Slide Number 46

